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Abstract 
Based on the formalism for calculating the integrated 
reflection power ratio of a plane mosaic crystal by 
using three dimensionless parameters as described in 
paper I [Hu (1997). Acta Cryst. A53, 000--000], exact 
and universal expressions for the secondary-extinction 
factors in X-ray and neutron crystallography are devel- 
oped that can be applied to reflections of all possible 
values of extinction factor, reflection symmetry and the 
absorption-to-scattering cross-section ratio of the crystal. 
The representation by three parameters gives a clear and 
definite physical meaning to the concept of extinction. 
The theory has been extended to treat the extinction 
of a spherical crystal, and the striking difference in 
the evaluated secondary-extinction factor between the 
equivalent single-plate and the exact method in the 
spherical-crystal treatment under 08 = 0 ° is explained. 
As a demonstration of the feasibility of using these 
expressions, the diffraction data for LiF and MgO crystal 
plates measured by Lawrence [Acta Cryst. (1972), A28, 
400-404; (1973), A29, 208-210] are reanalyzed by 
this method. All the reflections including the strongest 
ones (1I,, down to 0.026) are reanalyzed simultaneously 
with single-valued particle size and mosaic spread as 
fitting parameters and allowing for primary extinction 
if necessary. The results (R factor = 0.014 and 0.053 
for LiF and MgO, respectively) are unprecedentedly 
good. Furthermore, in disagreement with Lawrence, the 
extinction of LiF is found to be of secondary type and in 
the case of MgO both primary and secondary extinction 
should be considered. The analysis also shows that the 
formula Y ,,~ Yp Y is valid only for very weak extinctions 
and that the Harrtilton-Darwin equations are valid in a 
range much broader than previously anticipated. 

1. Introduction 
The treatment of extinction in X-ray and neutron crystal- 
lography is a fundamental topic in diffraction theory and 
has long been an important problem in structure-factor 
refinement. Extinction was first proposed by Darwin 
(1914) and described in terms of his mosaic model 
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(Darwin, 1922). Hamilton (1957, 1963) first studied the 
dependence of extinction on crystal shape. Zachariasen 
(1967) gave a general theoretical treatment for extinction 
in the X-ray case, Becker & Coppens (1974) signif- 
icantly improved Zachariasen's theory and thereafter 
their methods have been widely used in structure-factor 
refinement in the limit of small extinction (less than 
20%). For further investigation of this problem, Borie 
(1982) mentioned the importance of the absorption- 
to-scattering cross-section ratio. Werner (1974) gave a 
solution of the Hamilton-Darwin transfer equations to 
express the extinction factor for a parallelepiped crystal 
and analyzed the contributions to the extinction factor 
for neutrons reflected one, three and five times. One 
may list other papers related to this problem such as the 
treating of the inhomogeneity in the mosaic structure 
(Schneider, 1977), the treatment of extinction for a 
mosaic crystal plate (Mazzone, 1981; Suortti, 1982; 
Yelon, van Laar, Kaprzyk & Maniawski, 1984; Yelon, 
van Laar, Maniawski & Kaprzyk, 1984; Palmer & Jauch, 
1995) and the numerical approximation for the imperfect 
crystal (Wilkins, 1981). Kato (1976, 1980) investigated 
the secondary extinction and the combination of both 
primary and secondary extinction with statistical dy- 
namical theory. Sabine reconciliated different extinction 
theories (Sabine, 1988) and derived the extinction factor 
for a cubic shaped crystal (Sabine, 1995; Kampermann, 
Sabine & Craven, 1995). Whatever achievements have 
been made by these authors, however, the problem of 
treatment of severe extinction remains unresolved. To 
deal with this situation, experimentalists have used very 
thin (as thin as 10 lam) crystals in their measurements in 
order to avoid the difficulties in determining the extinc- 
tion factor due to strong reflections in thick crystals. 

In this paper, the secondary extinction for diffraction 
from mosaic crystal plates is treated through exact 
solutions for the integrated reflection power ratio (here 
referred to as IRPR) expressions using three dimen- 
sionless parameters as described in the preceding paper 
(Hu, 1997; hereafter referred to as I). In §2.1, the two 
universal exact expressions for the secondary extinction 
in the case of plane-crystal geometry will be described 
in detail, as well as their behavior and their relation 
to the three dimensionless parameters: an asymmetry 
factor b, the ratio ~ of the absorption to the scattering 
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cross section and the reduced thickness A k of the crystal. 
§2.2 is an extension of this theory to the case of a 
spherical crystal. In §3, two experimental studies of 
the X-ray diffraction for crystal plates carried out by 
Lawrence (1972, 1973a,b; hereafter referred to as L1972, 
L1973a,b) on LiF and MgO, a long-standing test case 
in the analysis of diffraction data, are analyzed by our 
method as examples of its practical application and as 
a demonstration of the usefulness of the new extinction 
formalism. 

2. Extinction 

If there is no primary extinction, the term 'secondary 
extinction' may be considered as referring to the ratio 
between the integrated reflection power ratio (IRPR) 
resulting from multiple reflection and absorption within 
the crystal and the IRPR due to a single reflection based 
on the kinematic approximation without extinction. Sec- 
ondary extinction for a plane and a spherical crystal 
according this definition is treated as follows. 

2.1. Plane crystal 

Just as in I, the mosaic distribution of the crystal is 
assumed to be Gaussian, and the diffraction geometry 
to be as depicted in Fig. 1 of I. Like the expressions 
for the IRPR of a plane crystal that appeared in I, all 
expressions for the secondary-extinction factor may be 
used here for any incident-beam width. 

Single reflection for a plane mosaic crystal can in 
practice be considered to occur in two cases: 

0 (a) For a thin crystal when the condition R n - 
Qto/cos 0 o is met. This is depicted in Fig. 6 of I as the 
straight line from the origin. For example, in Fig. 6(a), 
when (o = 0.1 and ]hi = 1, this condition is satisfied 
only for Ako < 0.1. The physical meaning of this result 
is that the path length traveled by the neutron (or X-ray) 
should be much less than one scattering mean free path 
so that most of the reflected beams suffer only one 
reflection. 

(b) For absorbing crystals, no matter the thickness, 
when (0 > 10. This is depicted in Fig. 7 of I. The 
physical meaning is that the absorption mean free path 
of the sample is much smaller than the scattering mean 
free path, and so nearly all the exit beam comes from 
a single reflection. The IRPR can be expressed by (30), 
(32) and (33) of I for Bragg and Laue cases, respectively. 
This is the normal case in X-ray crystallography for most 
of the crystals with atomic number Z > 20 and 71 > 2' 
and is valid also for strongly absorbing crystals in the 
neutron case. 

For all cases other than (a) and (b), the effect of 
multiple reflections may not be neglected and hence 
secondary-extinction effects must be considered. Be- 
cause single reflection can effectively occur for cases 
both (a) without absorption and (b) with absorption, as 

described above, the definition of secondary extinction 
can accordingly be expressed in two different forms, (a) 
Y~, and (b) Y,. The IRPR both for single reflection and 
for multiple r'eflection can be expressed in terms of the 
three dimensionles parameters Z,0, (o and Ako. Thus, the 
Y~ and Yt, can also be expressed in terms of the same 
parameters through variable transformation as 

0 R H R°t/'l 
Y~" = Qt o sec 0,, - (27r)l/2A/,~j (1) 

Y~, = QA,./, I. (2) 

From the definition of Ako and ~0 as well as the IRPR 
for single reflection for the Bragg and Laue cases, 
i.e. (25)-(27), (30) and (32)-(33) in I, QA,./zI can be 
expressed as: 
for the Bragg case: 

QA,./71 = [(27r)1/2/(1 - b)(o] 

x {1 - exp[-(1 - b)~0A~,]}; (3) 

for the Laue case (b = 1): 

QA,./zl = (27r)'/2A~)exp(-~0A~,)" (4) 

for the Laue case (b ¢1): 

QA. / ,  I = [(27r)1/2/(1 - b)~0] 

x [exp(-b(oAko ) - exp(--(0ak0)]. (5) 

Note that the right sides of (3)-(5) will be (27r)l/2A~ 
when ((0 = 0), i.e. (2) and (1) are identical in this case. 

When primary extinction occurs, Yl, Z'0 is used in- 
stead of S o  (Wemer, 1974). This causes all the param- 
eters containing S o  such as Ak0, ~0 that appear in (1) 
and (2) to contain Yp implicitly through the modified S o  
factor. However, by definition, the denominators of (i) 
and (2) are the extinction-free kinematic approximation 
of the IRPR, so here it should be divided by Yp to restore 
its physical meaning when we use the three-parameter 
representation for treating data with extinction. 

The relationship of the secondary-extinction factor 
to the three dimensionless parameters can be derived 
directly from the relationship of R ° to these parameters 
as depicted in Figs. 6 and 7 of I. 

Fig. 1 illustrates the dependence of the secondary 
extinction Y upon Ako for symmetric geometry. One 
can see clearly the remarkable reduction of Y~ with 
increasing (o and Ako. For the asymmetric case, such 

0 a dependence can be obtained through the ratio of R H 
to Qt sec 00 in Fig. 6(b) in I and one can anticipate a 
remarkable decrease of 1I,, with increasing b for a given 

Fig. 2 depicts the dependence of Y~, on Ako for 
different ~0 under symmetric geometry. For the Laue 
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case, all the curves of Y~, versus A~o for different ~0 
degenerate into a single curve identical to the Y~ curve 
for the symmetric Laue case for ~o = 0, as depicted in 
Fig. 1. This is because, in the latter case, the absorption 
and scattering can be treated separately in the expression 
for the IRPR. Fig. 2 also shows that Y becomes linear / t  

and insensitive to ~0 only for very small Ako for the 
Bragg case. However, these curves disperse when A~) 
increases. We note that, for example, the value of Y, 
for ~o = 1.5 goes down to its plateau around Ako _> t, 
which is nearly the same Ak0 position when the IRPR 
reaches its saturation value in Fig. 6(a) in I. This Ak0 
value, in fact, represents the depth of penetration of the 
incident beam in the crystal. 

Figs. 3(a) and (b) depict the dependence of Y on A ( /t k) 
for different b in the case of ~o = 0.1 and 2.0, respec- 
tively. Fig. 3(b) shows a very pronounced dependence 
of Y~, on b for the Laue case. For the Bragg case, the 
range of Ako, which is sensitive to b and shrinks when 
~0 rises, finally becomes insensitive to b. 

1.0 

- -  Bragg Case . _ 
0.8 ~ . . . .  Laue Case IDI = I . U  ~o 

o°: ° 

,,.---.. 
0 1 2 $ 4 5 8 

A~0=l s0t0/cosO, 
Fig. 1. The secondary-extinction factor Y~, for a plane mosaic crystal 

as a function of reduced thickness A~) for Ibl = 1 and for different 
values of ~o- 

0,8 ~ 4.0 

1.5 

y. o._~ 

0.2 Bragg Case . . . . . .  
. . . .  Laue Case 

~,0 I l I I I 

0.0 LO 2.0 3.0 4.0 5.0 6.0 

Ako 
Fig. 2. The secondary-extinction factor Yt, for a plane mosaic crystal 

as a function of reduced thickness Ako for [bl = I and different 
values of ,%. 

Fig. 4 depicts the dependence of Yt, on ~o for different 
b in the Bragg case. Yt, is rather insensitive to b and 
gives the same curve for both b and 1/b (see Appendix 
A in I). The reciprocity relation is true for Y~, when t o, 
71 and (0 of the crystal are defined. Yt, changes rapidly 

1.0 
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U \ ~ , , ' ~ ~ - - L a u e  Case ~o=0.1 

" ' \  

,,, 
"'-.'>---22-- 

0,2 1.0 
2.0 . . . . . . .  
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Ak0 
(a) 

[ ~  Bragg Case 
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(L4 0.2 -, ,, " - 
0.5 : ~ - "  - "  - -  
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O.2 2.0 
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1~ , I , I , 

ILl lh ll) :3J) 
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Fig. 3. The secondary-extinction factor Yj, for a plane mosaic crystal as 
a function of (o, reduced thickness Ako and asymmetry parameter b. 
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Fig. 4. The relationship between ~o and the secondary-extinction factor 

Y~, for a plane mosaic crystal of infinite thickness t0; the parameters 
on the curves give values of b. 
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with (0 and, unlike 11,, increases with increasing 40 and 
approaches the saturation value unity when (0 > 10. 
For example, Y -- 0 935 when 4. - 10, which means 

• . I t  " 0 

that tlae contribution of multiple reflections is only about 
10% in the total IRPR. 

2.2. Spherical crystal 
When a spherical crystal of radius R is immersed in 

a homogeneous incident beam and the diffracted beam 
is collected by a detector recording the total reflecting 
power, we can express the secondary-extinction factor 
in two different forms, Y~, and Yu, just as in the plane- 
crystal case mentioned before. 

It is impossible to obtain an exact solution of the 
Hamilton-Darwin equations (hereafter referred to as 
H-D equations) for a spherical crystal except for the 
extreme cases 0 R = 0 and 7r/2. 

We may apply the formulae for the reflection power 
ratio for a crystal plate in the symmetric Laue and Bragg 
cases deduced from equations (2a) and (2b) of I to 
express the reflection power ratio for 08 = 0 and 7r/2, 
respectively. Thus, 

for 0 e = 7r/2, # # 0: 

(Pn/Po)(4,Ak) = {1 - exp[--2(42 + 24)1/2Ak]} 

x { ( 4 2 + 2 4 )  ' / 2 + 4 +  1 

+ [(42 + 24) '/2 - (4 + 1)] 

× exp[--2(42 + 24)'/2Ak]} - '  ; ( 6 )  

for 08 = 7r/2, # = 0: 

(PH/Po)(O, Ak) = Ak/(1 + Ak); (7) 

for 0/~ = 0 and all #: 

(PH/Po)(4,Ak) = exp(-4Ak)[1 - exp(-2Ak)] /2 .  (8) 

The IRPR for 0 B = 7r/2 and 0 can be obtained by angular 
integration of (6)-(8). 

In order to evaluate the angular dependence of the 
secondary-extinction factor of a spherical crystal, a 
proper expression of the angular dependence of IRPR 
for single and multiple reflection for a definite 08 
should first be formulated. As described by Becker 
& Coppens (1974) and Sabine (1988), this can only be 
approximately realized by interpolating from the values 
for 0 and 7r/2. Assume 

(R°ff °e/zl)( 4 o, S oR) ~_ (R~i °/r/)(4o, S oR ) cos 2 0 B 

+ (R~'~/2/~)(4 o, Z,~,R)sin 20 .  

(9) 

and 

S.R) (Qa',!/'7)(4o,  ,,R)cos: 
+ (QA~/Z/rl)(4o, ZsoR) sin 2 08. 

(lO) 

Sabine (1988) gave an approximate expression for the 
secondary-extinction factor of a cylindrical crystal with 
radius p for the non-absorbing case through the ratio 
of (9) to QV. His result for a given 08 at L'~p = 5 is 
smaller than the result based on numerical calculation 
of Hamilton (1963) with a maximum deviation of 10%. 
Also, the result ofA c calculated by (10) for a given 0 B at 
#p _< 5 is smaller than the result listed in International 
Tables for X-ray Crystallography (1972) (ITXCr) with a 
maximun deviation of 12%. So it seems reasonable to 
use an approximate presentation of Yu through the ratio 
of (9) to (10). 

There are three possible methods that may be used 
for approximate calculation of the IRPR for multiple 
and single reflection for a given 0 B. 

(a) The diffraction geometry may be approximated 
by an incident beam of area 7rR 2 diffracted from a plate 
with a mean path length of 3R/2. Hence, the IRPR for 
multiple and single reflection of a spherical crystal under 
0 A = 0 and 7r/2 can be obtained by substituting 3 S R / 2  
and 3~'~)R/2 for A k and Au) in (6)-(8) and (3), (4), 
respectively, i.e. 

q~(4 ,3S~)R /2 )  = 7rRZ(R°i°"/rl)(4o, 3~<,R/2) (11) 

~" (4 ,3Z ,~ ,R/2)  = 7rRZ(QA°"/rl)(4o, 3Z~R/2),  (12) 

where q5 °B and ~ "  can then be approximated as in the 
right sides of (9) and (10), respectively. Thus, Y~, and 
YI, can be expressed as 

Y.,(4o, ZsoR, 0e) = q5~"(4°' 3 S ~ R / 2 )  
7rRZ3QR/2rl 

_ 2'/2qS°l"(4o, 3S.,.oR/2) 
37r3/2SoR 3 

(13) 

Yu(4o, S,.oR, OB) = q5°"(40 , 3ZeoR/2 ) 
• ~o,(4o, 3L" R / 2 ) '  

(14) 

where (13) and (14) are identical when 4o = 0. For 
consistency with Becker & Coppens (1974), S.,~)R is 
used as a variable for the reduced radius in Y~, and Y 

(b) A better approximation is to consider the sphdre 
as a stack of cylindrical platelets with equal thickness dz 
and different radius p, parallel to the plane of diffraction 
defined by the incident and diffraction vectors (see Fig. 
5). Then the multiple IRPR of each cylindrical platelet 
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can be approximated as the diffraction from a plane 
platelet and a mean path length of 16p/37r with an 
incident beam of area 2p dz, which gives a contribution 
of 2R°[(0 , 16S,~,(R 2 - z2)l/2/37r](R 2 - z2) 1/2 dz. 

The corresponding IRPRs for single reflection by 
non-absorbing and absorbing spherical crystals are, re- 
spectively, 

R R 
(Q/rl) f (16p/37r)4pdz  = (64Q/37rr/) . f(R 2 - z 2) dz 

0 0 

= 128 x 21/2~-~soR3/97rl/2 

(15) 

and 

 ,0R) 
R 

= 4.f(QA°/rl)[£o, 16Z.,9(R 2 - z2)1/2/37r] 
0 

x (R 2 -- Z 2)1/2 dz (16) 

~ 3 ; / 2  (~0 , G ) R )  

R 
= 4 f(QAy. 12/rl)[,f,o, 16S~o(R 2 - z2)1/2/37r] 

0 

X (R 2 - z2)l/2dz. (17) 

The IRPRs for multiple reflection are 

Z,,,R) 
R 

= 4 .] (Rn°/rl)[,~o, 16~'so(R 2 - z211/2/37r1 
0 

X (R 2 --  Z2) 1/2 dz (18) 

R 0 
= 4 f ( R ~  ~/2/rl)[~ o, 16Zso(R 2 - z2)1/2/37r] 

0 
× (R 2 -- Z2) I/2 dz. (19) 

Then, q~OB and ~2 °8 can be approximated as in .the right 
sides of (9) and (10), respectively. 

Thus, we obtain the expressions 

Yu(~O, ~----~ oR, OB) = 97ri/20~e(~°' ~--~"~'R) (20) 
128 x 21/2~'~oR 3 

Yt,(~O,~oR, OB) = 0°"(¢° '  ~'~°n) (21) 

(c) The third method is to consider the sphere just as 
a sphere. The corresponding IRPRs for single reflection 
by a real absorbing spherical crystal can be expressed 

by 03:* 

~P3 = (QA/~7)V, (22) 

where V is the volume of the sphere and A is the 
transmission coefficient. From ITXCr (1972), the exact 
expressions of A for 08 = 0 and 08 = 7r/2 are 

i _ e x p ( - 2 # R )  a ° = [3/2(izR)3]{ 

× [½ + #R + (#n)2]} (23) 

a ~/2 (3 /4#R)  { I - "-- 2 - [1/16(#R)2][ 1 - (1 + 4/zR) 

x exp(-4/zR)]  }. (24) 

Hence, 

2/dO(~o,~ff)R) [(871.3)1/2 ~ 2  3 1 = / ,,o~o]{ ~ - e x p ( - 2 ~ o ~ o R )  

x [± ~0Z~0 R (25) 2 + + (~0 ~E'+~0R) 2] } 

Fig. 5. The cylindrical coordinate system (z, p). z and p are related 
by p2 + z2 = R 2. 

@ ; / 2 ( ~ 0 ,  v, s 0 g )  = [(271.3)1/2(~V,sog)2/~v,2)~(,]  

I _ [ 1 / 1 6 ( ~ o S ~ o R ) 2 ]  × { ~  

x [ 1 - ( 1 + 4~o Sso R) 
x exp(-4~oS,~R)] }. (26) 

* The following formulae should be used instead of (22) and (25) 
when (0S.~oR < 0.02: 

(i) the IRPR for single reflection by an absorbing cylindrical platelet: 

~r/2 
2p(Oal!/q) dz = 4(27r)l/2S~)p2 f exp(--2,~oSsop cos O) 

0 

× c o s  2 o d O d z ;  

(ii) the corresponding IRPR for single reflection by an absorbing 
spherical crystal: 

R 
~'~(~o. S~oR) = 4 .f(QA°/q)[~o. Sso(R 2 - z 2)1/2](R 2 _ z 2)1/2 dz. 

o 
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For calculating the IRPR for multiple reflection, the 
sphere is again considered as a stack of cylindrical 
platelets. Following Hamiliton (1957), the diffraction 
by a cylindrical platelet can be considered as being 
composed of an infinite number of pencil beams with 
different path length in a platelet. Here the exact values 
of IRPR for multiple reflection of each platelet at 0t~ = 0 
and 7r/2 can be calculated for both absorbing and 
non-absorbing cases; thus, the exact value of R°H for 
a spherical crystal for 0 r = 0 and 7r/2 can also be 
evaluated. 

The corresponding IRPR for multiple reflection by a 
cylindrical platelet is 

2p(R° /'I)((,, , X,,,P) dz 
yr / 2 .~ 

= 2p .]" f ( P , / P o ) ( ( , 2 Z p c o s ~ )  
0 --cw,, 

× cos~  (dA0/T1)d~o dz. (27) 

The IRPR for a cylindrical platelet under 0j~ - 7r/2 
and 0 when (o :/: 0 can be calculated by substituting (6) 
to (8) into (27), respectively. And, when ~o = 0, they 
can be calculated by substituting (7) and (8) into (27), 
respectively. By transforming the variable from p into z, 
the IRPR for multiple reflection by a spherical crystal is 

R 
0.0 4~°(¢,. S,,,R) - 4.f(R. /,I)[G. S.,,( Re - z2) 1/2] 

0 

X ( R  2 - Z2) 1/2 dz  (28) 

~3/2((o, S, oR) = 4 . i (R ~ rr/2/l])[~ O, ~r'~)(R2 - 7.2)1/21 
0 

× (R 2 -- Z2) 1/2 dz. (29) 

Then, ~h °'~ and "(;~" can be approximated as in the right 
sides of (9) and (10). Thus, we obtain the expressions 

rv(~o, S,oR ' OB ) = 3~"(( , , ,  X,.oR) 
4(27r3 ) i/2SsoR3 (30) 

Y,(~o, S~,R, 0r) = O0e((,,, ~,0R ) 
0e % (~{,. G,  R) 

(31) 

From (25)-(29), we note that both ~,b 3 and ~h 3 are 
proportional to 1/S,2o. Thus, the ratio between them, Y ,  
is only a function of (o and S~R. 

In the supplementary data,* tables list the values 
of q5 ° and ~3/2 for different ~o and S~R.  These ta- 
bles were calculated based on an arbitrarily chosen 

O,"r/2 * Tables of d~ and 3 have been deposited with the IUCr (Refer- 
ence: CR0503). Copies may be obtained through The Managing Editor, 
International Union of Crystallography, 5 Abbey Square, Chester CH 1 
2HU, England. 

~',o = 40.0cm - I .  Thus, for calculating 11, or Y,, the 
same value of S o should be used for the denominator 
of (30) and (31). 

The IRPR and hence the Y,,, Y, derived from the 
three different methods may deviate from each other 
quite appreciably in some cases. We take the extreme 
case 0 r = 0 as an important example. 

For 0 / / - -0  and when absorption is very low, i.e. 
~o ~- 0, the values of IRPR for multiple reflection as 
well as Y derived from the three methods are similar. 

tt 
However, for the case of (0 > 0.5 and (0SoR > 1.5 (i.e. 
R > 1.5/#), the situation changes drastically. Physically, 
the increase of ~0 or S oR means the increase of the 
opacity at the center region of the sphere and the slow 
movement of the main part of the exit diffracted beam 
toward the periphery of the sphere. For the single-plate 
approximation (a), this effect is completely overlooked. 
For method (b), only the exit diffracted beam close to 
the polar region of the sphere along the z direction 
is considered, while the penetration of the diffracted 
beam around the periphery other than the polar region 
is still overlooked. Only method (c), the exact approach, 
considers all these effects. Thus, for example, the IRPR 
calculated from method (b) for (o = 1, S oR = 6 and 
0 B = 0 is 16.8 times larger than that from (a), while 
method (c) gives an IRPR value 4.3 times larger than 
that from (b). Fig. 6 depicts the dependence of Y 

V' tl on ~ o R  at 0u = 0 from the three different methods. 
Method (a) gives a curve similar to the curve for a plane 
crystal for the symmetric Laue case (see Fig. 2), with 
Ako -- 3Z~0R/2, but both methods (b) and (c) give higher 
values of Y, for the same S oR. This is because, for a 
defined S oR, the equivalent mean path length of the 
cylinder plate for method (b) contributing to the main 
part of the diffracted beam of the sphere will decrease 
with increasing (0, and this in turn will lead to the 
increase of Y,. The Y from method (c) is larger since in 

• t 
this method more periphery effect has been considered. 
Y~, is nearly the same from the three different methods, 
the Y, versus S,oR curve is similar to that of a plane 
crystal under symmetric Laue geometry (see Fig. 1) if 
3S, oR/2 is used instead of A k as the abscissa. These 
curves decrease very quickly at large (0. This diffraction 
behavior is similar to that under small 0 r. 

Y~ or Y, is nearly the same from the three methods 
for 0 e = 7r/2. Fig. 7 depicts the dependence of S,0R on 
the exact values of Y, for 0 r = 0 and 0 r = 7r/2. 

For a non-absorbing crystal, when sin 0 r - 0.05, the 
Y~, (or Y,) are 0.1445, 0.0808 and 0.0308 for S oR = 5, 
10 and J0, respectively; while the corresponding values 
given by Becker & Coppens (1974) (BC) are 0.1476, 
0.0802 and 0.0256. The difference between the results 
from this work and those from BC is 18% for S oR = 
30. One can see from Fig. 8(a) that our secondary- 
extinction factor Y for 0 r = 7r/6, 11, = 0 calculated by 
method (c) is in good agreement with those of BC. The 
Y~, are 7.9 and 5.9% smaller than BC at ZToR = 5 and 
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30, respectively. For ~0 = 1, S+R < 3, the maximum 
difference of Y between our result and that of BC is 

t t 

5.3%, while the value given by Zachariasen (1967) is 
11.6% larger than ours. 

We note that a dip always appears in the Y,  versus ~',,o 
curves when {0 > 0.1, as shown in Fig. 8(c). This seems 
reasonable when the Y~, versus Ak( ) curves for a crystal 
plate under symmetric Bragg and Laue cases, as shown 
in Fig. 2, are examined, since the diffraction geometry 
for a spherical crystal is assumed to be a combination 
of the two cases. However, in BC and Zachariasen's 
curves almost no dip appears. We also note that the 
Y for a spherical crystal approaches the corresponding 
saturated value for a plane crystal under Bragg geometry 
for 0 B = ~-/6, ~o~'.,0 R > 10, i.e. when R > IO/IL. This 
also seems reasonable. 

In comparing the observed extinction factor with the 
calculated secondary-extinction factor Y~,, one should 
note that the observed integrated reflecting power p; is 

= F 2 Pi oLP A, (32) 
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Fig. 6. The secondary-extinction factor Yt, for a spherical mosaic 
crystal under 0t~ = 0 as a function of ~v'.,oR for different values of 
(o. Method (a) dotted curve; method (b) dash-dotted curve; method 
(c) continuous curve. 
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Fig. 8. Comparison of Yt, calculated by method (c) at 011 = 7r/6 with 
the results given by Becker & Coppens (1974) and Zachariasen 
(1967) stopping at (o~,oR = 4, beyond which no 7"H value (Rigoult 
& Guidi-Morosini, 1980) is available for calculation. 
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where Lp is the Lorentz-polarization factor and A is the 
transmission coefficient for a spherical crystal, which 
is a function of 0 n and ltR (International Tables for 
Crystallography, 1995) (ITCr). The observed extinction 

F2 / F 2 where factor Yo can be evaluated through 1I,, = o, c, 
F o is the observed structure amplitude. 

3. Application of the theory of 
extinction to a real plane crystal 

In most of the real single-crystal cases, even the nature 
of the extinction, i.e. primary or secondary type, has 
remained confused until now. To demonstrate the appli- 
cability of our extinction theory to a crystal plate, we 
take two examples. For LiF single crystals, extinction 
is a problem that has been debated for more than 20 
years (Zachariasen, 1968; L1972; Killean, Lawrence & 
Sharma, 1972; Becket & Coppens, 1974). The other 
example is MgO, which exhibits very strong extinction. 
The extinction factor for some of its reflections can be 
as low as ,~ 0.05 (L1973b) and so its treatment becomes 
very difficult. 

3.1. LiF single crystal 

All the original experimental data of LiF are taken di- 
rectly from the original publications (L1972; L1973a,b). 
The atomic scattering factors are from ITXCr (1974). 
The very small anomalous-dispersion correction is ne- 
glected. Lawrence measured the IRPR of 46 sets of 
symmetry-equivalent reflections, corresponding to about 
100 b values, for a large plane LiF single crystal (NaCI 
structure, a = 4.0262,~, t o = 0.139cm, with Mo Kc~ 
X-radiation, A = 0.7107,~, # = 3.4cm-1).  The results 
are listed in Table 1 in which: 

(i) The calculated ~. is the mean value of Y for all 
the equivalent reflections for different Bragg a~d Laue 
cases. For example, the reflection 331 includes four Laue 
cases with b = 2.307, 0.4333, 1.218 and 0.8210, giving 
A, = 0.0656, 0.1514, 0.0828, 0.1009; the value of II,, for 
the first two reflections is 0.914 and for the latter two is 
0.942, and thus ~. = 0.928 is the overall mean value. 

(ii) All the reflections were simultaneously included 
in the fitting process. A revised scale factor of 1.1 and 
three fitting parameters, ~1 = 0.58', BLi - -  1.02 and B F - 

0.655/~2 were used throughout the analysis. The R factor 

R = ~ IIFol- IF, I I / ~  Ie,,I 
and ~ [AYI/N, where N is the number of sets of 
symmetry-equivalent reflections evaluated here, have 
the values R = 0.0137 and ~ [AYI/N = 0.0158. 
This shows that the agreement is very satisfactory, 
particularly when one considers that all the reflections 
are included. We also note that (i) the fitting parameter 
rl - 0.58' corresponding to a FWHM of 82" is much 
larger than the 2.3" Darwin width for the 200 reflection 
and (ii) the radius of the mosaic block r ~ 2 × 
10 -6m measured by Killean et al. (1972) through the 

Table 1. The structure factor observed, Fo, corrected, 
F 1 = Fo/} zl/2, and calculated, Fc; and the extinction 
factor observed, Yo, and calculated, ~'~, for each reflec- 

tion of LiF 

h k l  F o F~ F c Yo ~'c 

1 1 1 9.88 19.07 19.07 0.268 0.268 
2 0 0 13.09 30.18 29.13 0.202 0.188 
2 2 0 12.21 20.57 20.82 0.344 0.352 
3 l l 7.55 8.84 8.71 0.752 0.729 
2 2 2 l l.17 15.25 16.03 0.485 0.536 
4 0 0 10.63 12.62 12.95 0.674 0.710 
3 3 I 5.55 5.76 5.75 0.930 0.928 
4 2 0 9.47 10.95 10.82 0.766 0.749 
4 2 2 8.35 9.29 9.26 0.812 0.808 
5 1 ! 4.51 4.60 4.52 0.996 0.963 
4 4 0 6.79 7.10 7.16 0.899 0.912 
5 3 I 3.80 3.85 3.85 0.971 0.970 
6 0 0 6.14 6.30 6.41 0.916 0.949 
4 4 2 6.13 6.34 6.41 0.912 0.933 
6 2 0 5.55 5.67 5.80 0.915 0.957 
5 3 3 3.36 3.40 3.42 0.964 0.976 
6 2 2 5.09 5.19 5.29 0.925 0.962 
4 4 4 4.69 4.78 4.85 0.933 0.961 
5 5 1 3.04 3.07 3.09 0.971 0.984 
7 1 1 3.05 3.07 3.09 0.978 0.990 
6 4 0 4.36 4.43 4.48 0.951 0.972 
6 4 2 4.08 4.13 4.14 0.969 0.975 
8 0 0 3.54 3.57 3.59 0.976 0.988 
7 3 3 2.53 2.54 2.56 0.977 0.992 
8 2 0 3.32 3.35 3.35 0.985 0.988 
6 6 0 3.13 3.15 3.13 0.994 0.986 
8 2 2 3.14 3.15 3.13 1.001 0.989 
7 5 1 2.31 2.32 2.33 0.981 0.991 
6 6 2 2.94 2.96 2.94 0.999 0.987 
8 4 0 2.78 2.80 2.76 1.017 0.989 
7 5 3 2.12 2.13 2.12 0.998 0.991 
9 1 1 2.1 I 2.11 2.12 0.989 0.995 
8 4 2 2.59 2.61 2.59 1.001 0.989 
6 6 4 2.43 2.45 2.44 0.998 0.986 
9 3 1 1.91 1.92 1.93 0.981 0.993 
8 4 4 2.16 2.17 2.16 1.001 0.989 
7 5 5 1.74 1.75 1.75 0.990 0.993 
7 7 1 1.74 1.75 1.75 0.990 0.993 

10 0 0 2.03 2.04 2.04 1.000 0.992 
8 6 0 2.03 2.04 2.04 1.000 0.991 

10 2 0 1.89 1.90 1.92 0.967 0.990 
8 6 2 1.91 1.92 1.92 0.989 0.991 
9 5 1 1.54 1.55 1.59 0.944 0.993 
7 7 3 1.55 1.56 1.59 0.957 0.991 

10 2 2 1.78 1.79 1.81 0.969 0.990 
6 6 6 1.79 1.80 1.81 0.980 0.991 

dislocation density is much less than the extinction 
distance A = 1.2 × 10-Sm for the 200 reflection with 
A = 0.7107 A,. All these suggest that extinction of LiF 
is of the secondary type, in agreement with Killean, 
Lawrence & Sharma (1972) who used the same batch 
of LiF crystals as Lawrence, and not the primary type as 
Lawrence (1972) and Becker & Coppens (1974) claimed. 

3.2. MgO single crystal 

For a detailed analysis of the very strong extinction 
in X-ray diffraction by an MgO single-crystal plate, 
the original experimental data of Lawrence (1973b) 
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are used. MgO has the NaC1 structure (a -- 4.213/~, 
t 0 = 0.151 cm) with Mo Ko~ X-radiation (A = 0.7107,~), 
/z = 10.2cm -1. All the N'(N 4 -- 77) sets of Laue and 
Bragg cases for symmetry-equivalent reflections were 
listed and reanalyzed separately. During the analysis we 
found: 

(i) When secondary extinction is considered alone, 
the best fit ( r /=  0.052', B M = 0.30, B o =  0.345/~2) 
gives rather large values, R g-  0.103, ~] ]ZIYI/N' = 
0.0592. There is a systematic deviation between the 
calculated values for the Bragg and Laue cases and 
the corresponding data cannot be matched by adjusting 
the parameters. These results indicate the existence of 
primary extinction that should be calculated together 
with secondary extinction. 

(ii) For this purpose, ,StaY p is inserted into (2) in- 
stead of Ss0 (Werner, 1974). The primary-extinction 
factor Yp is calculated by the method of Becker & 
Coppens (1974), and the readjusted parameters after 
the introduction of both primary and secondary extinc- 
tion are 'r/ -- 0.20', r -- 38 l.tm. The Debye-Waller 
factors BMg = 0.30, B o -- 0.34/~2 are identical with 
Lawrence's (1973a) fit for his small MgO spherical- 
crystal case. The results for the extinction factor and 
some related parameters for both the Laue case and the 
Bragg case are listed in Tables 2 and 3, respectively. 
Just as in the LiF case, the minimum value of the 
R factor and of ~ ]AY]/N' is obtained by manual 
adjustment without the use of a least-squares program. 
The final results, R = 0.0533, ~ IZ~YI/N' = 0.0376, 
show a noticeable improvement compared to results for 
secondary-extinction correction alone. 

Note that several columns of the parameters after 
Y in Table 2 and Table 3 where primary extinction is p 
involved are obtained by putting Y Z~c instead of S in 

p .' ) s0  
the numerator. Also, Y~,. (corrected only for secondary 
extinction) for different b are listed separately, while for 
b and 1/b there is only one value presented since the y,.,. 
are the same. _Ys,. is the mean value of Y.,c for different b. 
Values of Y,., 1I,. are extinction factors with both primary 
and secondary extinction considered. 

The value Y = Y Y has been used occasionally when p s 

both primary and secondary extinction exists. However, 
such an approximation agrees with our result only for 
Ye > 0.8 (see Tables 2, 3). For Yp < 0.8, our treatment 
Dves a ]I,. value larger than Ypy,. and the deviation 
increases further for small Y This is why we use p "  

Werner's treatment instead of using the value Yp y~. The 
value r = 38 l, tm may be slightly too large in comparison 
with the result of L(1973b) for MgO but our purpose here 
is not to determine the value of r but to explain why a 
small primary-extinction factor at low-angle reflection is 
required for a good fit. The ultimate test of the validity 
of this method will require experiment with different 
values of A. 

The values o f  Y~, for the MgO 200 reflection evaluated 
with the same R H, A~ and r/value listed in Tables 2 and 

3 for the Laue and Bragg cases are 0.0042 and 0.0019, 
respectively. The values of Y~ for the 933 reflection 
are 0.034 and 0.22 for the Laue and Bragg cases, 
respectively. One can see that in an absorbing crystal the 
values of Y~, for Bragg geometry remain small even for a 
very large reflection angle such as sin ~)8/A = 1.18/~-1 
This means that the scaling factor would be inaccurate 
if Y~, were used for data reduction in such a case. 

There are several factors that make the R value for 
MgO larger than for LiF. The first is the very strong 
extinction in MgO, in which most of the observed 
extinction factors for the Bragg case are larger than 
for the corresponding Laue case. Thus, L(1973b) listed 
them separately but in LiF the listed values are the 
mean for the two cases, which is easier to fit than if 
they are treated separately. L(1973b) remarked in his 
MgO work: 'The observed structure factors for a set of 
symmetry-equivalent reflections whose planes diffracted 
with Laue-type geometry were the same, as were those 
with Bragg type'. However, from Tables 2 and 3, one 
can see that for a set of symmetry-equivalent reflections 
the calculated structure factor usually will be different 
for different b. The difference in some cases may be as 
large as 20%. The co-existence of primary and secondary 
extinction in MgO also makes the fit more difficult. 

From the above analysis, one can see that it is 
necessary, for an accurate determination of the structure 
factor from a single-crystal sample, to ensure that: 

(a) The sample is of good quality with homogeneous 
mosaic spread throughout and free from any deforma- 
tion. Its surface should be properly treated by mild 
etching and the size of the plane crystal should be large 
enough to cover all the reflected beam with the reception 
width of the detector sufficiently wide. It is also desirable 
to make a preliminary test run to estimate the mosaic 
spread of the sample to see if the thickness of the sample 
is reasonable. 

(b) When a set of symmetry-equivalent reflections for 
a plane crystal is measured, it is desirable to treat the 
Bragg and Laue cases for different b values separately. 
For an absorbing plane crystal, it is better to analyze the 
same set of data with both Y~, and Y~, considering that 
Y~, decreases with increasing ~0 and Y~ increases with 
increasing 40 (see Figs. 1 and 2). The agreement between 
the values of Fco r obtained from the two ~ '  s can be used 
as a criterion for the correctness of the chosen scaling 
factor, ~7, and the Debye-Waller factors. 

4. Conclusions and discussion 

The re-analysis of the experiments LiF and MgO yield 
very good fits, showing that simple, exact and uni- 
versal expressions for the secondary extinction for a 
crystal plate can be obtained and can be extended to 
the spherical crystal with satisfactory results. Hereafter, 
all seriously extinguished reflections in single-crystal 
diffractometry may be accessible for data analysis in 
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Table 2. The observed and calculated structure factors and the observed and calculated extinction factor for each 
Laue reflection of MgO 

The values of Q (rad cm - l )  and R ° are multiplied by 10 4. 

h k l OR F,, F,. Q b A,. Yo Y~,. Y,,- Yt' (o A~, R ° Y( Y,. 

2 0 0 9.71 8.40 52.52 399.5 1.00 0.032 0.026 0.030 0.030 0.071 0.522 2.99 0.2555 0.020 0.020 
2 2 0 13.80 8.45 41.17 166.5 0.61 0.028 0.042 0.048 0.056 0.097 0.918 3.24 0.1494 0.032 0.036 

1.00 0.032 0.064 1.73 0.2114 0.040 
2 2 2 16.99 8.44 33.93 88.62 0.64 0.032 0.062 0.092 0.092 0.126 1.331 1.89 0.1615 0.057 0.057 
4 0 0 19.72 8.42 28.89 53.46 1.00 0.031 0.085 0.164 0.164 0.158 1.762 0.93 0.1519 0.091 0.091 
4 2 0 22.16 8.48 25.17 34.95 0.66 0.034 0.114 0.209 0.196 0.192 2.213 !.06 0.1361 0.115 0.110 

0.10 0.014 0.151 9.06 0.0464 0.094 
1.00 0.031 0.228 0.75 0.1310 0.121 

4 2 2 24.41 8.32 22.32 24.20 0.66 0.034 0.139 0.277 0.252 0.229 2.682 0.87 0.1218 0.149 0.139 
0.22 0.021 0.226 3.05 0.0659 0.129 

4 4 0 28.50 8.36 18.24 13 .11  0.30 0.027 0.210 0.369 0.404 0.307 3.691 1.47 0.0730 0.204 0.215 
! .00 0.030 0.439 0.47 0.0883 0.226 

6 0 0 30.40 7.81 16.73 10.11 1.00 0.029 0.218 0.504 0.504 0.347 4.235 0.42 0.0783 0.264 0.264 
4 4 2 30.40 8.17 16.73 10 .11  0.31 0.029 0.239 0.437 0.437 0.347 4.235 1.19 0.0704 0.243 0.251 

0.66 0.033 0.486 0.56 0.0872 0.259 
6 2 0 32.24 7.73 15.46 8.00 0.65 0.033 0.250 0.545 0.554 0.387 4.808 0.51 0.0782 0.297 0.299 

1.00 0.029 0.562 0.38 0.0697 0.301 
6 2 2 34.02 7.51 14.38 6.48 0.65 0.033 0.273 0.597 0.597 0.425 5.408 0.46 0.0703 0.334 0.334 
4 4 4 35.76 7.66 13.45 5.35 0.33 0.030 0.324 0.605 0.605 0.461 6.032 0.79 0.0570 0.357 0.357 
6 4 0 37.46 7.47 12.64 4.51 0.32 0.030 0.349 0.646 0.668 0.495 6.674 0.71 0.0524 0.391 0.399 

1.00 0.027 0.690 0.29 0.0501 0.407 
6 4 2 39.14 7.10 11.94 3.86 0.32 0.029 0.354 0.681 0.694 0.526 7.326 0.66 0.0482 0.424 0.429 

0.63 0.031 0.708 0.36 0.0519 0.434 
8 0 0 42.44 6.51 10.75 2.98 1.00 0.025 0.367 0.761 0.761 0.580 8.609 0.24 0.0372 0.492 0.492 
8 2 0 44.07 6.43 10.25 2.68 0.61 0.029 0.394 0.768 0.772 0.602 9.213 0.32 0.0395 0.511 0.513 

1.00 0.025 0.776 0.23 0.0340 0.515 
6 4 4 44.07 6.42 10.25 2.68 0.30 0.028 0.393 0.751 0.751 0.602 9.213 0.57 0.0375 0.503 0.503 
6 6 0 45.70 6.61 9.79 2.45 1.00 0.024 0.455 0.787 0.787 0.622 9.774 0.23 0.0311 0.534 0.534 
8 2 2 45.70 6.71 9.79 2.45 0.60 0.028 0.469 0.780 0.780 0.622 9.774 0.31 0.0363 0.531 0.531 
6 6 2 47.33 6.39 9.38 2.26 0.59 0.027 0.465 0.789 0.789 0.640 10.27 0.31 0.0335 0.548 0.548 
8 4 0 48.97 6.23 8.99 2.12 0.27 0.025 0.480 0.786 0.794 0.655 10 . 71  0.58 0.0297 0.557 0.561 

1.00 0.023 0.801 0.22 0.0264 0.564 
8 4 2 50.63 6.24 8.64 2.02 0.26 0.024 0.522 0.793 0.796 0.668 11.05 0.60 0.0275 0.569 0.571 

0.57 0.025 0.799 0.31 0.0288 0.573 
6 6 4 52.30 6.06 8.32 1.94 0.24 0.023 0.531 0.796 0.796 0.679 11 . 31  0.63 0.0256 0.579 0.579 
8 4 4 55.73 6.10 7.73 1.85 0.21 0.020 0.624 0.798 0.798 0.697 11.52 0.76 0.0222 0.593 0.593 

10 0 0 57.51 5.73 7.46 i.84 1.00 0.016 0.590 0.791 0.791 0.703 11.47 0.25 0.0175 0.594 0.594 
8 6 0 57.51 5.95 7.46 1.84 1.00 0.016 0.636 0.791 0.791 0.703 11.47 0.25 0.0175 0.594 0.594 

10 2 0 59.34 5.75 7.20 1.85 0.50 0.018 0.636 0.780 0.780 0.709 11.31 0.41 0.0193 0.592 0.592 
1.00 0.014 0.781 0.27 0.0159 0.593 

8 6 2 59.34 5.83 7.20 1.85 0.50 0.018 0.654 0.780 0.780 0.709 11 . 31  0.41 0.0193 0.592 0.592 
10 2 2 61.23 5.71 6.96 1.89 0.47 0.016 0.671 0.768 0.768 0.714 11.04 0.46 0.0174 0.589 0.589 
10 4 0 65.29 5.34 6.52 2.03 0.07 0.013 0.671 0.763 0.743 0.722 10.15 2.99 0.0151 0.590 0.579 

!.00 0.010 0.724 0.36 0.0105 0.568 
10 4 2 67.51 5.08 6.31 2.16 0.03 0.011 0.647 0.745 0.727 0.725 9.516 8.66 0.0137 0.582 0.571 

0.38 0.010 0.709 0.78 0.0112 0.560 
3 3 i 21.57 6.03 9.73 5.40 0.45 0.030 0.384 0.604 0.641 0.513 5.361 0.68 0.0618 0.387 0.401 

0.83 0.033 0.677 0.35 0.0745 0.415 
5 1 1 25.99 5.43 7.28 2.37 0.83 0.033 0.556 0.829 0.829 0.663 9.475 0.20 0.0452 0.584 0.584 
5 3 ! 29.93 4.74 5.51 1.12 0.49 0.033 0.739 0.896 0.893 0.784 16.93 0.18 0.0265 0.719 0.717 

0.82 0.032 0.910 0.12 0.0260 0.728 
0.05 0.018 0.871 2.19 0.0142 0.703 

5 3 3 33.58 3.85 4.26 0.58 0.49 0.033 0.817 0.944 0.938 0.866 29.78 0.11 0.0155 0.824 0.819 
0.12 0.022 0.933 0.44 0.0106 0.815 

7 1 I 37.04 3.17 3.37 0.32 0.81 0.030 0.886 0.971 0.971 0.916 50.22 0.04 0.0086 0.891 0.891 
5 5 1 37.04 3.19 3.37 0.32 0.15 0.024 0.898 0.962 0.966 0.916 50.22 0.21 0.0070 0.884 0.887 

0.81 0.030 0.971 0.04 0.0086 0.89 i 
7 3 1 40.38 2.61 2.73 0.20 0.47 0.031 0.910 0.979 0.980 0.945 79.65 0.04 0.0056 0.926 0.927 

0.80 0.029 0.981 0.03 0.0053 0.928 
5 5 3 40.38 2.60 2.73 0.20 0.16 0.025 0.903 0.977 0.978 0.945 79.65 0.12 0.0045 0.924 0.925 

0.47 0.031 0.979 0.04 0.0056 0.926 
7 3 3 43.66 2.19 2.27 0.13 0.45 0.029 0.933 0.985 0.985 0.962 117.4 0.03 0.0037 0.949 0.949 
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Table 2 (cont.) 
h k l OB F,, /% Q b A,, Yo Yw ~'sc Yp Go Ako ROH 1I; Y; 

7 5 1 46.92 1.86 1.93 0.10 0.14 0.024 0.926 0.988 0.989 0.972 159 .9  0.07 0.0022 0.961 0.962 
0.78 0.026 0.990 0.02 0.0024 0.962 

9 1 1 50.21 1.68 1.68 0.08 0.77 0.024 0.994 0.991 0 . 9 9 1  0.978 200.9 0 . 0 1  0.0017 0.970 0.970 
7 5 3 50.21 1.72 1.68 0.08 0.12 0.022 1 .043  0.991 0.991 0.978 200.9 0.07 0.0016 0.969 0.969 

0.41 0.025 0.991 0.02 0.0019 0.969 
9 3 1 53.57 1.46 1.50 0.06 0.38 0.023 0.957 0.992 0.992 0.982 233.2 0.02 0.0014 0.974 0.974 

0.75 0.021 0.992 0.01 0.0013 0.974 
7 7 1 57.06 i.31 !.36 0.06 0.73 0.018 0.932 0.992 0.992 0.984 250.9 0 . 0 1  0.0010 0.976 0.976 
9 3 3 57.06 1.35 1.36 0.06 0.34 0.020 0.990 0.992 0.992 0.984 250.9 0.02 0.0012 0.976 0.976 

T a b l e  3. The o b s e r v e d  and  ca lcu la ted  s tructure  f a c t o r s  and  the o b s e r v e d  a n d  ca lcu la ted  ex t inc t ion  f a c t o r s  f o r  
each  Bragg  ref lect ion o f  M g O  

The values of Q (rad cm - l )  and R ° are multiplied by 104. 

h k I 0 B F o F,. Q b A c Yo Ys,. L,. Yp ~o ako ROH Yc ~'c 

2 0 0 9.71 12.24 52.52 399.5 --1.00 0.049 0.054 0.101 0.101 0.071 0.522 17.50 0.6910 0.035 0.035 
4 0 0 1 9 . 7 2  1 1 . 1 9  28.89 53.46 --I.00 0.049 0.150 0.367 0.367 0.158 1.762 2.59 0.3058 0.117 0.117 
6 0 0 30.40 9.73 1 6 . 7 3  1 0 . 1 1  --1.00 0.049 0.338 0.708 0.708 0.347 4.235 0.72 0.1487 0.301 0.301 
6 2 0 32.24 9.41 15.46 8.00 --3.24 0.023 0.371 0.744 0.744 0.387 4.808 0.41 0.0627 0.339 0.339 
6 2 2 34.02 9.31 14.38 6.48 --5.63 0.015 0.419 0.777 0.777 0.425 5.408 0.33 0.0361 0.377 0.377 
6 4 0 37.46 8.59 12.64 4.51 --14.39 0.006 0.462 0.829 0,829 0.495 6.674 0.24 0.0129 0.448 0.448 
6 4 2 39.14 8.39 11.94 3.86 --22.79 0.004 0.494 0.849 0.849 0.526 7.326 0.22 0.0076 0.480 0.480 
8 0 0 42.44 7.58 10.75 2.98 --1.00 0.049 0.498 0.886 0.886 0.580 8.609 0.27 0.0779 0.539 0.539 
8 2 0 44.07 7.51 10.25 2.68 --1.70 0.036 0.538 0.895 0.895 0.602 9.213 0.20 0.0543 0.562 0.562 
6 6 0 45.70 7.47 9.79 2.45 --81.78 0 .001  0.583 0.898 0.898 0.622 9.774 0.16 0.0017 0.581 0.581 
8 2 2 45.70 7.21 9.79 2.45 --2.05 0.032 0.542 0.902 0.902 0.622 9.774 0.17 0.0455 0.582 0.582 
8 4 4 55.73 6.47 7.73 1.85 --2.86 0.025 0.702 0.922 0.922 0.697 11.52 0.13 0.0309 0.658 0.658 

10 0 0 57.51 6.24 7.46 1.84 --1.00 0.048 0.701 0.928 0.928 0.703 11.47 0.16 0.0587 0.667 0.667 
10 2 0 59.34 6.08 7.20 1.85 --I.27 0.042 0.712 0.928 0.928 0.709 11.31 0.14 0.0525 0.672 0.672 
8 6 2 59.34 6.12 7.20 1.85 --2.76 0.026 0.722 0.922 0.921 0.709 11.31 0.14 0.0322 0.669 0.668 

--9.81 0.009 0.921 0.15 0.0112 0.668 
10 2 2 61.23 5.94 6.96 1.89 --i.37 0.040 0.727 0.926 0.926 0.714 11.04 0.14 0.0515 0.675 0.675 
10 4 0 65.29 5.60 6.52 2.03 --1.45 0.039 0.736 0.921 0.921 0.722 10.15 0.15 0.0539 0.679 0.679 
10 4 2 67.51 5.34 6.31 2.16 --1.45 0.039 0.716 0.917 0.917 0.725 9.516 0.16 0.0572 0.680 0.680 
5 1 ! 25.99 6.06 7.28 2.37 --3.76 0.021 0.692 0.902 0.902 0.663 9.475 0.24 0.0301 0.618 0.618 
7 1 1 37.04 3.25 3.37 0.32 --1.73 0.036 0.932 0.985 0.985 0.916 50.22 0.04 0.0104 0.903 0.903 
7 3 1 40.38 2.69 2.73 0.20 --3.27 0.023 0.967 0 .991  0.991 0.945 79.65 0.02 0.0043 0.937 0.937 
7 3 3 43.66 2.24 2.27 0.13 --4.48 0.018 0.976 0.994 0.994 0.962 117.4 0.01 0.0023 0.956 0.956 
9 3 1 53.57 1.49 1.50 0.06 --1.70 0.036 0.997 0.997 0.997 0.982 233.2 0.01 0.0023 0.979 0.979 
7 7 1 57.06 1.34 1.36 0.06 --4.79 0.017 0.976 0.997 0.997 0.984 250.9 0.01 0.0010 0.981 0.981 
9 3 3 57.06 1.35 1.36 0.06 --1.88 0.034 0.990 0.997 0.997 0.984 250.9 0.01 0.0020 0.981 0.981 
7 5 5 57.06 1.32 1.36 0.06 --4.79 0.017 0.946 0.997 0.997 0.984 250.9 0.01 0.0010 0.981 0.981 
9 5 1 60.75 1.26 1.26 0.06 -- 1.93 0.033 1 .007  0.997 0.997 0.985 250.9 0.01 0.0020 0.982 0.982 
7 7 3 60.75 1.23 1.26 0.06 --4.12 0.019 0.959 0.997 0.997 0.985 250.9 0.01 0.0011 0.982 0.982 
9 5 3 64.76 1.16 1.18 0.06 --1.88 0.034 0.966 0.997 0.997 0.985 232.9 0.01 0.0021 0.982 0.982 

-- 17.97 0.005 0.997 0.01 0.0003 0.982 
I I 1 ! 69.30 1.09 1.12 0.08 -- !. 10 0.045 0.940 0.997 0.997 0.985 198.1 0.01 0.0034 0.982 0.982 
7 7 5 69.30 1.08 1.12 0.08 --2.73 0.026 0.923 0.996 0.996 0.985 198.1 0.01 0.0020 0.982 0.982 

--6.94 0.012 0.996 0.01 0.0009 0.982 

it is impossiblc to have 440, 531 and 551 reflections for the Bragg case for a plane MgO crystal cut along I100], [010] and [001] with Cu Kc~ 
incidence, but the corresponding 'intensity' appears in Lawrence's (1973b) table, while in the same table the allowed Bragg-case reflections 
for 644, 662, 840, 842, 664, 860, 751, 911 and 753 are missing. 

t r ad i t i ona l  c r y s t a l l o g r a p h y ,  in pa r t i cu l a r  fo r  the  case  o f  by  m e a s u r i n g  the  I R P R  ra the r  t han  r e l y i n g  on  a n g u l a r  

l o n g - w a v e l e n g t h  X - r a y  d i f f r a c t i o n  a n d  a l so  fo r  the  case  m e a s u r e m e n t  a n d  the  d i r ec t  e v a l u a t i o n  o f  the  v a l u e  o f  

w h e r e  a b s o r p t i o n  has  to be c o n s i d e r e d  a n d  the  l o w - a n g l e  # fo r  n e u t r o n  d i f f r a c t i o n  w h e n  the  ine las t i c  s ca t t e r i ng  

i n f o r m a t i o n  is i m p o r t a n t ,  as in n e u t r o n  d i f f r a c t r o m e t r y  e f f e c t  is i n c l u d e d .  

fo r  a m a g n e t i c  s t ruc tu re  s t u d y  o f  r a r e - ea r th  c o m p o u n d s .  T h e  a p p l i c a b i l i t y  o f  th is  t h e o r y ,  o b v i o u s l y ,  is fo r  

T h e  p r e sen t  m e t h o d  a l so  o f f e r s  o t h e r  poss ib i l i t i e s ,  s u c h  c ry s t a l s  w i t h  sma l l  m o s a i c  b l o c k s  a n d  la rge  m o s a i c  

as the  e v a l u a t i o n  o f  the  m o s a i c  s p r e a d  o f  a c rys t a l  sp read .  F o r  the  o t h e r  e x t r e m e  case ,  i.e. a pe r f ec t  p la te  
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crystal where coherent diffraction dominates, one can 
gave an adequate treatment of its primary extinction. 
The problem, however, is how far this theory can be 
extended. The two conceptual difficulties involved in 
crystals with relatively large mosaic blocks and small 
mosaic spread have been pointed out by Werner (1974). 
Kato (1976, 1980) and Kawamura & Kato (1983) sug- 
gested that the H-D equations hold as far as "r e < 
A, where A is the extinction distance and "r2 is the 
correlation length of the phase factor; his criterion, in 
fact, is a minimum allowable 7/ when the wavelength 
and reflection plane are defined. Becker (1977) suggested 
that the H-D equations with Z'~_Y instead of S ,  should 

_ " p ' 

be valid as far as l < A, where l is the mean size of the 
mosaic blocks. Keeping this criterion in mind, one can 
see from analysis of the MgO experiment that the fitting 
parameter of block radius r = 38 lam already exceeds 
the A value of 7.3 × 10 -6 m for the 200 reflection, i.e., 
by Becker's criterion, the primary extinction is too large 
for the ~'~Yp treatment. However, the other parameter 
zl = 0.2', corresponding to a "r2/A value of 0.1, is within 
the range of applicability for the H-D equations set by 
Kato; the mosaic spread 28.3", evaluated from the fitting 
value 71, is much larger than 3.85", the value of the 
Darwin width of the 200 reflection. The relatively good 
agreement with experimental values of extinction factors 
for MgO suggests that the criterion set by Becker may be 
too strict. All these, however, are tentative and a final 
judgement may require further verification and should 
include comparison with carefully prepared experiments 
carried out using several different wavelengths. 

Through refinement of the data for LiF, we believe 
that secondary extinction may still dominate for a par- 
ticular reflection at very low Bragg angle provided that 
(i) the size of the mosaic blocks is much less than A for 
that angle, and (ii) "r e < A. 

This method is adequate for a plane crystal in the 
asymmetric case. However, for an extremely asymmetric 
Bragg case when the angle of grazing emergence is of 
the order of a few minutes, i.e. b < -150 ,  the non- 
applicability of the H-D equations (Sears, 1996) should 
be considered. 

Anisotropic extinction resulting from anisotropy in 
a mosaic structure can also be included in the formal 
theory by allowing ~/ and l in S Y to depend on the 
Miller indices of the reflection (17"~r, 1995). 

I am grateful to Professor T. M. Sabine of the Lucas 
Heights Research Laboratory, Australia, for valuable 

discussions. I am also grateful to Profesor E. Fawcett 
of the University of Toronto, Canada, Professor B. 
M. Craven of the University of Pittsburgh, USA, and 
Professor Z. Yang of the Neutron Scattering Laboratory 
of CIAE, China, for help and valuable suggestions about 
presentation. 
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