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Abstract

Based on the formalism for calculating the integrated
reflection power ratio of a plane mosaic crystal by
using three dimensionless parameters as described in
paper I [Hu (1997). Acta Cryst. AS3, 000-000], exact
and universal expressions for the secondary-extinction
factors in X-ray and neutron crystallography are devel-
oped that can be applied to reflections of all possible
values of extinction factor, reflection symmetry and the
absorption-to-scattering cross-section ratio of the crystal.
The representation by three parameters gives a clear and
definite physical meaning to the concept of extinction.
The theory has been extended to treat the extinction
of a spherical crystal, and the striking difference in
the evaluated secondary-extinction factor between the
equivalent single-plate and the exact method in the
spherical-crystal treatment under §, = 0° is explained.
As a demonstration of the feasibility of using these
expressions, the diffraction data for LiF and MgO crystal
plates measured by Lawrence [Acta Cryst. (1972), A28,
400-404; (1973), A29, 208-210] are reanalyzed by
this method. All the reflections including the strongest
ones (Y, down to 0.026) are reanalyzed simultaneously
with single-valued particle size and mosaic spread as
fitting parameters and allowing for primary extinction
if necessary. The results (R factor = 0.014 and 0.053
for LiF and MgO, respectively) are unprecedentedly
good. Furthermore, in disagreement with Lawrence, the
extinction of LiF is found to be of secondary type and in
the case of MgO both primary and secondary extinction
should be considered. The analysis also shows that the
formula Y ~ Y Y, is valid only for very weak extinctions
and that the Hamilton-Darwin equations are valid in a
range much broader than previously anticipated.

1. Introduction

The treatment of extinction in X-ray and neutron crystal-
lography is a fundamental topic in diffraction theory and
has long been an important problem in structure-factor
refinement. Extinction was first proposed by Darwin
(1914) and described in terms of his mosaic model
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(Darwin, 1922). Hamilton (1957, 1963) first studied the
dependence of extinction on crystal shape. Zachariasen
(1967) gave a general theoretical treatment for extinction
in the X-ray case, Becker & Coppens (1974) signif-
icantly improved Zachariasen’s theory and thereafter
their methods have been widely used in structure-factor
refinement in the limit of small extinction (less than
20%). For further investigation of this problem, Borie
(1982) mentioned the importance of the absorption-
to-scattering cross-section ratio. Werner (1974) gave a
solution of the Hamilton-Darwin transfer equations to
express the extinction factor for a parallelepiped crystal
and analyzed the contributions to the extinction factor
for neutrons reflected one, three and five times. One
may list other papers related to this problem such as the
treating of the inhomogeneity in the mosaic structure
(Schneider, 1977), the treatment of extinction for a
mosaic crystal plate (Mazzone, 1981; Suortti, 1982;
Yelon, van Laar, Kaprzyk & Maniawski, 1984; Yelon,
van Laar, Maniawski & Kaprzyk, 1984; Palmer & Jauch,
1995) and the numerical approximation for the imperfect
crystal (Wilkins, 1981). Kato (1976, 1980) investigated
the secondary extinction and the combination of both
primary and secondary extinction with statistical dy-
namical theory. Sabine reconciliated different extinction
theories (Sabine, 1988) and derived the extinction factor
for a cubic shaped crystal (Sabine, 1995; Kampermann,
Sabine & Craven, 1995). Whatever achievements have
been made by these authors, however, the problem of
treatment of severe extinction remains unresolved. To
deal with this situation, experimentalists have used very
thin (as thin as 10 um) crystals in their measurements in
order to avoid the difficulties in determining the extinc-
tion factor due to strong reflections in thick crystals.

In this paper, the secondary extinction for diffraction
from mosaic crystal plates is treated through exact
solutions for the integrated reflection power ratio (here
referred to as IRPR) expressions using three dimen-
sionless parameters as described in the preceding paper
(Hu, 1997; hereafter referred to as I). In §2.1, the two
universal exact expressions for the secondary extinction
in the case of plane-crystal geometry will be described
in detail, as well as their behavior and their relation
to the three dimensionless parameters: an asymmetry
factor b, the ratio £ of the absorption to the scattering

Acta Crystallographica Section A
ISSN 0108-7673 © 1997



494

cross section and the reduced thickness A, of the crystal.
$2.2 is an extension of this theory to the case of a
spherical crystal. In §3, two experimental studies of
the X-ray diffraction for crystal plates carried out by
Lawrence (1972, 1973a,b; hereafter referred to as L1972,
L1973a,b) on LiF and MgO, a long-standing test case
in the analysis of diffraction data, are analyzed by our
method as examples of its practical application and as
a demonstration of the usefulness of the new extinction
formalism.

2. Extinction

If there is no primary extinction, the term ‘secondary
extinction’ may be considered as referring to the ratio
between the integrated reflection power ratio (IRPR)
resulting from multiple reflection and absorption within
the crystal and the IRPR due to a single reflection based
on the kinematic approximation without extinction. Sec-
ondary extinction for a plane and a spherical crystal
according this definition is treated as follows.

2.1. Plane crystal

Just as in I, the mosaic distribution of the crystal is
assumed to be Gaussian, and the diffraction geometry
to be as depicted in Fig. 1 of I. Like the expressions
for the IRPR of a plane crystal that appeared in I, all
expressions for the secondary-extinction factor may be
used here for any incident-beam width.

Single reflection for a plane mosaic crystal can in
practice be considered to occur in two cases:

(a) For a thin crystal when the condition R‘9
Qt,/cos @ is met. This is depicted in Fig. 6 of I as the
straight line from the origin. For example, in Fig. 6(a),
when ¢, = 0.1 and |b| = 1, this condition is satisfied
only for A, < 0.1. The physical meaning of this result
is that the path length traveled by the neutron (or X-ray)
should be much less than one scattering mean free path
so that most of the reflected beams suffer only one
reflection.

(b) For absorbing crystals, no matter the thickness,
when ¢, > 10. This is depicted in Fig. 7 of 1. The
physical meaning is that the absorption mean free path
of the sample is much smaller than the scattering mean
free path, and so nearly all the exit beam comes from
a single reflection. The IRPR can be expressed by (30),
(32) and (33) of I for Bragg and Laue cases, respectively.
This is the normal case in X-ray crystallography for most
of the crystals with atomic number Z > 20 and 7 > 2
and is valid also for strongly absorbing crystals in the
neutron case.

For all cases other than (a) and (b), the effect of
multiple reflections may not be neglected and hence
secondary-extinction effects must be considered. Be-
cause single reflection can effectively occur for cases
both (a) without absorption and (b) with absorption, as
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described above, the definition of secondary extinction
can accordingly be expressed in two different forms, (a)
Y, and (b) Y The IRPR both for smgle reflection and
for multiple reflection can be expressed in terms of the
three dimensionles parameters Y, £, and A,,. Thus, the
Y, and Y can also be expressed in terms of the same
parameters through variable transformation as

9 6
— R, — R/
Y Qrysecd,  (2m)'/2A

- Raln, @
"OQA/n
From the definition of A, and &, as well as the IRPR
for single reflection for the Bragg and Laue cases,
i.e. (25)~(27), (30) and (32)—(33) in I, QA /5 can be
expressed as:
for the Bragg case:

(1)

QA(»/"I = [(271')1/2/(1 - b)g()]

x {1 —exp[—(1 b)EAl}s (3)
for the Laue case (b = 1):
QA(-/U = (zw)l/zAm exp(—{oAm); (4)

for the Laue case (b #1):

QAC/" = [(27")1/2/(1 - b)§,]
X [exp(—bf()AkO) - exp(—&ko)]. (5)

Note that the right sides of (3)—(5) will be (27r)'/2A,d,
when (¢, = 0), i.e. (2) and (1) are identical in this case.
When primary extinction occurs, YpZm is used in-
stead of 2\0 (Werner, 1974). This causes all the param-
eters containing X' such as A, §, that appear in (1)
and (2) to contain Y, implicitly through the modified >,
factor. However, by definition, the denominators of (l)
and (2) are the extinction-free kinematic approximation
of the IRPR, so here it should be divided by Y to restore
its physical meaning when we use the three- -parameter
representation for treating data with extinction.

The relationship of the secondary-extinction factor
to the three dimensionless parameters can be derived
directly from the relationship of Rf, to these parameters
as depicted in Figs. 6 and 7 of I.

Fig. 1 illustrates the dependence of the secondary
extinction Y, upon A, for symmetric geometry. One
can see clearly the remarkable reduction of Y, with
increasing ¢, and A,,. For the asymmetric case, such
a dependence can be obtained through the ratio of RZ
to Qrsecf, in Fig. 6(b) in I and one can anticipate a
remarkable decrease of Y, with increasing b for a given
&

)Flg 2 depicts the dependence of Y, on A, for
different &, under symmetric geometry. 'For the Laue
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case, all the curves of ¥, versus A, for different &,
degenerate into a single curve identical to the Y, curve

for the symmetric Laue case for £, = 0, as depicted in
Fig. 1. This is because, in the latter case, the absorption

and scattering can be treated separately in the expression
for the IRPR. Fig. 2 also shows that ¥, becomes linear
and insensitive to &; only for very small A, for the
Bragg case. However, these curves disperse when A,
increases. We note that, for example, the value of Y
for £, = 1.5 goes down to its plateau around A4,;, > 1,
which is nearly the same A, position when the IRPR
reaches its saturation value in Fig. 6(a) in 1. This A,
value, in fact, represents the depth of penetration of the
incident beam in the crystal.

Figs. 3(a) and (b) depict the dependence of ¥, on A,
for different b in the case of £, = 0.1 and 2.0, respec-
tively. Fig. 3(b) shows a very pronounced dependence
of Y, onb for the Laue case. For the Bragg case, the
range of A,,, which is sensitive to b and shrinks when
&, rises, finally becomes insensitive to b.

10
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Fig. 1. The secondary-extinction factor Y, for a plane mosaic crystal
as a function of reduced thickness Ay, for |b| = 1 and for different
values of §,.
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Fig. 2. The secondary-extinction factor Y, for a plane mosaic crystal
as a function of reduced thickness Ak(, for |p| = 1 and different
values of §.
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Flg 4 depicts the dependence of ¥, on {, for different
b in the Bragg case. Y, is rather insensitive to b and
gives the same curve for both b and 1/b (see Appendix
A in I). The reciprocity relation is true for Y, when ¢,
7 and & of the crystal are defined. ¥, changes rapidly

10
Bragg Case
0s -———Laue Case £,=0.1
“.—
Yo |
M bl MO Tl ST T
e e
Ll I
I 50
a0 : L
o0 0 20 30
Ao
(@
1.0
Bragg Case
-———Laoue Cose £=2.0
0s
VOSSO T~ a
I
Y os |- \:::\\\ ~~e_ s .-
# bl SSeosel Toe-
» ~ - T~
4 See o v~o Se~a
03 I
1.0 TSRzl
- 20 ==
02 5.0
0 L L
[T} 1.0 20 3
A
»

Fig. 3. The secondary-extinction factor ¥, for a plane mosaic crystal as
a function of &, reduced thickness Am and asymmetry parameter b.
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Fig. 4. The relationship between £ and the secondary-extinction factor
Y,, for a planc mosaic crystal of infinite thickness ; the parameters
on the curves give values of b.
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with £, and, unlike Y, increases with increasing &, and
approaches the saturation value unity when £, > 10.
For example, Y W = 0.935 when £, = 10, which means
that the contribution of multiple reflections is only about
10% in the total IRPR.

2.2. Spherical crystal

When a spherical crystal of radius R is immersed in
a homogeneous incident beam and the diffracted beam
is collected by a detector recording the total reflecting
power, we can express the secondary-extinction factor
in two different forms, Y, and Y, just as in the plane-
crystal case mentioned before.

It is impossible to obtain an exact solution of the
Hamilton-Darwin equations (hereafter referred to as
H-D equations) for a spherical crystal except for the
extreme cases f, = 0 and 7/2.

We may apply the formulae for the reflection power
ratio for a crystal plate in the symmetric Laue and Bragg
cases deduced from equations (2a) and (2b) of I to
express the reflection power ratio for §, = 0 and /2,
respectively. Thus,

for 6, = /2, u # 0O:

(Py/Py) (& A,) = {1 — exp[—2(€* + 2¢)'/%A,]}
x{(€+20)"+e+1
+[(E 422 = (£ +1)]
x exp[-2(6 +2¢)'°4]}75 (6)

for 0, = 7/2, p = O
(Pu/Po)(0,A) = A /(14 Ap); (7)
for , = 0 and all u:

(Py/Py) (& A,) = exp(—=EA (1 — exp(— 24,)]/2. (8)
The IRPR for §; = 7/2 and 0 can be obtained by angular
integration of (6)—(8).

In order to evaluate the angular dependence of the
secondary-extinction factor of a spherical crystal, a
proper expression of the angular dependence of IRPR
for single and multiple reflection for a definite 0,
should first be formulated. As described by Becker
& Coppens (1974) and Sabine (1988), this can only be
approximately realized by interpolating from the values
for 0 and 7 /2. Assume

(RE; % /m)(&y, ZoR) = (RG°/m)(€,, Z,4R) cos® B,

+ (R ™ )& ZoR) sin 6,
9)
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and

(QA% In)(&y, Z4R) ~ (QA®/1)(&,, £4R) cos? b,

+ (QAZ.r/Z/’?)(fo’ YoR) sin’ Op-
(10)

Sabine (1988) gave an approximate expression for the
secondary-extinction factor of a cylindrical crystal with
radius p for the non-absorbing case through the ratio
of (9) to QV. His result for a given 6, at ¥ p = 5 is
smaller than the result based on numerical calculation
of Hamilton (1963) with a maximum deviation of 10%.
Also, the result of A, calculated by (10) for a given 6, at
pup < 5 is smaller than the result listed in International
Tables for X-ray Crystallography (1972) (ITXCr) with a
maximun deviation of 12%. So it seems reasonable to
use an approximate presentation of Y, through the ratio
of (9) to (10).

There are three possible methods that may be used
for approximate calculation of the IRPR for multiple
and single reflection for a given 6.

(a) The diffraction geometry may be approximated
by an incident beam of area 7R? diffracted from a plate
with a mean path length of 3R/2. Hence, the IRPR for
multiple and single reflection of a spherical crystal under
65 = 0 and 7 /2 can be obtained by substituting 35 R/2
and 3% ,R/2 for A, and A, in (6)—(8) and (3), (4),
respectively, i.e.

V(6,350R/2) = TR (R} " [n) (€0, 350R/2) (11)

12(€,35)R/2) = TR*(QA% /n)(£,,354R/2), (12)

where c/)?" and z/)f” can then be approximated as in the
right sides of (9) and (10), respectively. Thus, Y, and

Y, can be expressed as

1" (€0, 350R/2)
7rR23QR/2n
2'2¢%(¢,,35 ,R/2)

B 3n%/220R‘ (13)

Y, (&, LR, 0g) =

7" (s 3ZR/2)

5 R0
(f() 50 ) 1/)03(6()7 32\{]R/2)

(14)

where (13) and (14) are identical when & = 0. For
consistency with Becker & Coppens (1974), YR is
used as a variable for the reduced radius in ¥, and Y,
(b) A better approximation is to consider the sphere
as a stack of cylindrical platelets with equal thickness dz
and different radius p, parallel to the plane of diffraction
defined by the incident and diffraction vectors (see Fig.
5). Then the multiple IRPR of each cylindrical platelet
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can be approximated as the diffraction from a plane
platelet and a mean path length of 16p/37 with an
incident beam of area 2p dz, which gives a contribution
of 2R} [¢,, 16X ((R* — 22)'/2/37|(R* — 22)'/? dz.

The corresponding IRPRs for single reflection by
non-absorbing and absorbing spherical crystals are, re-

spectively,

(Q/n) f(l6p/37r)4p dz = (64Q/3mn) f(R2 - 2)dz
=128 x 225 R} /97! /2
(15)
and
93 (€ps ZoR)
= 4 J(QAY /)y, 165(R® - 2)1/2 /3]
X ERz - 2)24z (16)
7€ ZoR)
= 4 J(QAT 1)l 165o(RE - 2)'/2/3r)
X ERZ - 2%)2dz. (17)
The IRPRs for multiple reflection are
$5(Ep» ZoR)
= 4 (R )6y, 160 (R? — 2)/2/3n]
X ER2—z2)'/2dz (18)

Fig. 5. The cylindrical coordinate system (z, p). z and p are related
by p? + 2 = RL
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1%(6 ZoR)
= 4 J(RG™ J)lEy 1650 (R — 2)V/2 /3]
X ?RZ - 2)?dz. (19)

Then, ¢5¢ and ¥¢* can be approximated as in the right
sides of (9) and (10), respectively.
Thus, we obtain the expressions

_ 97rl/2¢’gﬂ(€0v YoR)

Y ’ E Rv 0 - 20

oo 20 0) = o8 225 R (20)
9% (£ TR

Y, (&, LR, 0p) = g,, e )- (21)
2 (6()’ ZsOR)

(c) The third method is to consider the sphere just as
a sphere. The corresponding IRPRs for single reflection
by a real absorbing spherical crystal can be expressed

by 51
1»/)3 = (QA/n)V,

where V is the volume of the sphere and A is the
transmission coefficient. From ITXCr (1972), the exact
expressions of A for 8, = 0 and §, = 7/2 are

(22)

A® = [3/2(uR)*|{} — exp(—2uR)

X (3 + uR + (uR)*]} (23)

A™? = (3/4uR){L — [1/16(uR)?[1 — (1 + 4uR)
x exp(—4uR)]}. (24)

Hence,

P35 (€ ZoR) = [(87%) 2/ ZLEN{ S — exp(—2¢,Z oR)

X [% + & ZGR + (§Z4R)*} (25)
1/);-/2(60‘ ZSOR) = [(27r3)]/2(25()R)2/Z§)£()]
x {1 = [1/16(&,X,R)?]
X [1 = (144§, X R)
x exp(—4£, 2 ,R)]}. (26)

* The following formulae should be used instead of (22) and (25)
when {gXo0R < 0.02:
(i) the IRPR for single reflection by an absorbing cylindrical platelet:

/2
20(QA% /1) dz = 4(27) /2 o2 J exp(—2€.E,0p cos &)
0

x cos® o do dz;

(ii) the corresponding IRPR for single reflection by an absorbing
spherical crystal:

R
v§(&o. ZwoR) = 4 [(QAY/n)[€0. S(R? — 2)/2)(R2 — )" /2 ¢z
0
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For calculating the IRPR for multiple reflection, the
sphere is again considered as a stack of cylindrical
platelets. Following Hamiliton (1957), the diffraction
by a cylindrical platelet can be considered as being
composed of an infinite number of pencil beams with
different path length in a platelet. Here the exact values
of IRPR for multiple reflection of each platelet at #, = 0
and 7/2 can be calculated for both absorbing and
non-absorbing cases; thus, the exact value of RY for
a spherical crystal for §, =0 and 7/2 can also be
evaluated.

The corresponding IRPR for multiple reflection by a
cylindrical platelet is

2p(RY, /1) (&, Zop) dz
/2 x

=2p ] I (PH/P())(E, 2X pcosyp)

0 —oc

x cos ¢ (dAf/n) dp dz. (27)

The IRPR for a cylindrical platelet under 6, = /2
and 0 when ¢, # 0 can be calculated by substituting (6)
to (8) into (27), respectively. And, when &, = 0, they
can be calculated by substituting (7) and (8) into (27),
respectively. By transforming the variable from p into z,
the IRPR for multiple reflection by a spherical crystal is

R
(/)2(50‘ E.\-()R) =4 .f(R?i 0/71)[5()‘ Em(Rh - 32)1/2]
0

x (R —2)'?dz (28)

R
;/2(50’ LR =4 f(R:)i ﬂ/z/"l)[gw E;«)(Rz - 22)1/2]
0

x (R* = %)% dz. (29)
Then, ¢§” and 'g/);”' can be approximated as in the right
sides of (9) and (10). Thus, we obtain the expressions

3¢§B (g(l’ Ex()R)

Y 5 E Rv 0 =
(s R, ) 4(271'3)'/22.\11R3

(30)

2 (€ ZR)

Y N X R9 0 = )
,,(E() 50 B) 1/);)"(5()’ Z‘.sﬂR)

(31)

From (25)-(29), we note that both v, and ¢, are
proportional to 1/ E_‘_ZO. Thus, the ratio between them, Y“,
is only a function of £, and X R.

In the supplementary data,* tables list the values
of ¢ and ¢;/* for different &, and ¥ ,R. These ta-
bles were calculated based on an arbitrarily chosen

* Tables of QQ and @f/z have been deposited with the IUCr (Refer-
ence: CR0503). Copies may be obtained through The Managing Editor,
International Union of Crystallography, S Abbey Square, Chester CH1
2HU, England.
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same value of X, should be used for the denominator
of (30) and (31).

The IRPR and hence the Y , Y derived from the
three different methods may deviate from each other
quite appreciably in some cases. We take the extreme
case , = 0 as an important example.

For §, =0 and when absorption is very low, ie.
&, ~ 0, the values of IRPR for multiple reflection as
well as Y derived from the three methods are similar.
However, for the case of £, > 0.5 and §, X R > 1.5 (i.e.
R > 1.5/ ), the situation changes drastically. Physically,
the increase of {, or X R means the increase of the
opacity at the center region of the sphere and the slow
movement of the main part of the exit diffracted beam
toward the periphery of the sphere. For the single-plate
approximation (a), this effect is completely overlooked.
For method (b), only the exit diffracted beam close to
the polar region of the sphere along the : direction
is considered, while the penetration of the diffracted
beam around the periphery other than the polar region
is still overlooked. Only method (c), the exact approach,
considers all these effects. Thus, for example, the IRPR
calculated from method (b) for §{, =1, X )R =6 and
#, = 0 is 16.8 times larger than that from (a), while
method (c) gives an IRPR value 4.3 times larger than
that from (b). Fig. 6 depicts the dependence of Y,
on Y R at f, = O from the three different methods.
Method (a) gives a curve similar to the curve for a plane
crystal for the symmetric Laue case (see Fig. 2), with
A, = 3X R/2, but both methods () and (c) give higher
values of Y, for the same 5 \R. This is because, for a
defined X R, the equivalent mean path length of the
cylinder plate for method (b) contributing to the main
part of the diffracted beam of the sphere will decrease
with increasing &;, and this in turn will lead to the
increase of Y . The Y“ from method (c) is larger since in
this method more periphery effect has been considered.
Y, is nearly the same from the three different methods,
the Y, versus X R curve is similar to that of a plane
crystal under symmetric Laue geometry (see Fig. 1) if
3X,R/2 is used instead of A, as the abscissa. These
curves decrease very quickly at large §,. This diffraction
behavior is similar to that under small 6.

Y, or Y, is nearly the same from the three methods
for 6, = w/2. Fig. 7 depicts the dependence of X R on
the exact values of Y, for §; = 0 and 6, = 7/2.

For a non-absorbing crystal, when sin §, = 0.05, the
Y, (or Y) are 0.1445, 0.0808 and 0.0308 for ~ R = 5,
10 and éO, respectively; while the corresponding values
given by Becker & Coppens (1974) (BC) are 0.1476,
0.0802 and 0.0256. The difference between the results
from this work and those from BC is 18% for ¥ R =
30. One can see from Fig. 8(a) that our secondary-
extinction factor Y, for 6, = 7/6, ;1 = O calculated by
method (c) is in good agreement with those of BC. The
Y, are 7.9 and 5.9% smaller than BC at X’ /R = 5 and

5 =40.0cm™". Thus, for calculating Y, or Y, the
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30, respectively. For & = 1, X (R < 3, the maximum
difference of Y, between our result and that of BC is
5.3%, while the value given by Zachariasen (1967) is
11.6% larger than ours.

We note that a dip always appears in the Y, versus X,
curves when &, > 0.1, as shown in Fig. 8(c). This seems
reasonable when the Y versus A, curves for a crystal
plate under symmetric Bragg and Laue cases, as shown
in Fig. 2, are examined, since the diffraction geometry
for a spherical crystal is assumed to be a combination
of the two cases. However, in BC and Zachariasen’s
curves almost no dip appears. We also note that the
Y, for a spherical crystal approaches the corresponding
saturated value for a plane crystal under Bragg geometry
for 6, = 7/6, {,X R > 10, i.e. when R > 10/p. This
also seems reasonable.

In comparing the observed extinction factor with the
calculated secondary-extinction factor Y, one should
note that the observed integrated reflecting power p; is

(32)

P = Fi LpA,

Fig. 6. The secondary-exlinction factor Y, for a spherical mosaic
crystal under 85 = 0 as a function of £ 4R for diffcrent values of
£,. Method (a) dotted curve: method (b) dash-dotted curve; method
(¢) continuous curve.

10

08

Z%R

Fig. 7. The sccondary-extinction factor Y, for a spherical mosaic
crystal calculated by method (c) as a function of E4R. 6, = 0
continuous curve; #; = 7 /2 dash-dotted curve. The parameters
given on the curves are for §,.
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Fig. 8. Comparison of ¥, calculated by method (c) at 8 = 7 /6 with
the results given by Becker & Coppens (1974) and Zachariasen
(1967) stopping at &, R = 4. beyond which no Tyt value (Rigoult
& Guidi-Morosini, 1980) is available for calculation.
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where Lp is the Lorentz—polarization factor and A is the
transmission coefficient for a spherical crystal, which
is a function of 8, and pR (International Tables for
Crystallography, 1995) (ITCr). The observed extinction
factor Y, can be evaluated through ¥, = F> /Ff, where
F, is the observed structure amplitude.

3. Application of the theory of
extinction to a real plane crystal

In most of the real single-crystal cases, even the nature
of the extinction, ie. primary or secondary type, has
remained confused until now. To demonstrate the appli-
cability of our extinction theory to a crystal plate, we
take two examples. For LiF single crystals, extinction
is a problem that has been debated for more than 20
years (Zachariasen, 1968; L1972; Killean, Lawrence &
Sharma, 1972; Becker & Coppens, 1974). The other
example is MgO, which exhibits very strong extinction.
The extinction factor for some of its reflections can be
as low as ~ 0.05 (L1973b) and so its treatment becomes
very difficult.

3.1. LiF single crystal

All the original experimental data of LiF are taken di-
rectly from the original publications (L1972; L1973a,b).
The atomic scattering factors are from ITXCr (1974).
The very small anomalous-dispersion correction is ne-
glected. Lawrence measured the IRPR of 46 sets of
symmetry-equivalent reflections, corresponding to about
100 b values, for a large plane LiF single crystal (NaCl
structure, a = 4.0262 A, 1, = 0.139 cm, with Mo Ka
X-radiation, A = 0.7107 A, . = 3.4cm™"). The results
are listed in Table 1 in which:

(i) The calculated YC is the mean value of Y ,, for all
the equivalent reflections for different Bragg and Laue
cases. For example, the reflection 331 includes four Laue
cases with b = 2.307, 0.4333, 1.218 and 0.8210, giving
A, = 0.0656, 0.1514, 0.0828, 0.1009; the value of Y, for
the first two reflections is 0.914 and for the latter two is
0.942, and thus Y, = 0.928 is the overall mean value.

(i1) All the reflections were simultaneously included
in the fitting process. A revised scale factor of 1.1 and
three fitting parameters, 77 = 0.58', B, = 1.02 and B, =
0.655 A? were used throughout the analysis. The R factor

R=YS|IF,| - IFIl/IF,

and ) |AY|/N, where N is the number of sets of
symmetry-equivalent reflections evaluated here, have
the values R = 0.0137 and ) |AY|/N = 0.0158.
This shows that the agreement is very satisfactory,
particularly when one considers that all the reflections
are included. We also note that (i) the fitting parameter
7 = 0.58' corresponding to a FWHM of 82" is much
larger than the 2.3” Darwin width for the 200 reflection
and (ii) the radius of the mosaic block r ~ 2 x
10~® m measured by Killean et al. (1972) through the

X-RAY AND NEUTRON DIFFRACTION IN CRYSTALS. II

Table 1. The structure factor observed, F,, corrected,
F!=F, / Y!/?, and calculated, F.; and the extinction
factor observed, Y,, and calculated, Y., for each reflec-

tion of LiF
h k1 F, F) F, Y, Y,
111 98 1907 1907 0268 0.268
200 1309 3018 29.13 0202 0.188
220 1221 2057 2082 0344 0352
311 755 884 871 0752 0.729
222 1117 1525 1603 0485 0.536
400 1063 1262 1295 0674 0.710
331 5.55 576 575 0930 0.928
420 947 1095 1082 0.766 0.749
422 835 929 926 0812 0808
511 451 460 452 099 0963
440 679 710 716 0899 0912
531 38 38 385 0971 0970
600 614 630 641 0916 0949
442 613 634 641 0912 0933
620 555 567 580 0915 0957
533 336 340 342 0964 0976
622 509 519 529 0925 0962
444 469 478 485 0933 0961
551 304 307 309 0971 0984
711 305 307 309 0978 0.990
6 40 436 443 448 0951 0972
642 408 413 414 0969 0975
800 35 357 359 0976 0988
733 253 254 256 0977 0992
820 332 335 335 0985 0988
6 60 313 315 313 09% 098
822 314 315 313 1001 0989
751 231 232 233 0981 0991
6 62 294 296 294 0999 0987
840 278 280 276 1017 0989
753 212 213 212 0998 0991
9 1 1 211 211 212 098 0995
842 25 261 259 1001 0989
6 6 4 243 245 244 0998 0.986
931 1591 192 193 0981 0993
844 216 217 216 1001 0989
755 174 175 175 0990 0993
771 174 175 175 0990 0993
1000 203 204 204 1000 0992
860 203 204 204 1000 099]
1020 1.8 190 192 0967 0990
862 191 192 192 0989 0991
951 154 155 159 0944 0993
773 155 156 159 0957 0991
1022 178 179 181 0969 0.990
6 66 179 180 181 0980 0991

dislocation density is much less than the extinction
distance 4 = 1.2 x 107> m for the 200 reflection with
A = 0.7107 A. All these suggest that extinction of LiF
is of the secondary type, in agreement with Killean,
Lawrence & Sharma (1972) who used the same batch
of LiF crystals as Lawrence, and not the primary type as
Lawrence (1972) and Becker & Coppens (1974) claimed.

3.2. MgO single crystal

For a detailed analysis of the very strong extinction
in X-ray diffraction by an MgO single-crystal plate,
the original experimental data of Lawrence (1973b)
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are used. MgO has the NaCl structure (a = 4.213 A,
t, = 0.151 cm) with Mo Ko X-radiation (A = 0.71074),
p = 10.2cm~". All the N'(N' = 77) sets of Laue and
Bragg cases for symmetry-equivalent reflections were
listed and reanalyzed separately. During the analysis we
found:

(i) When secondary extinction is considered alone,
the best fit (n = 0.052', By, =0.30, B, = 0.345 A%)
gives rather large values, R = 0.103, 20: |AY|/N' =
0.0592. There is a systematic deviation between the
calculated values for the Bragg and Laue cases and
the corresponding data cannot be matched by adjusting
the parameters. These results indicate the existence of
primary extinction that should be calculated together
with secondary extinction.

(i1) For this purpose, E‘OY is inserted into (2) in-
stead of X, (Werner, 1974) The primary-extinction
factor Y is calculated by the method of Becker &
Coppens (1974), and the readjusted parameters after
the introduction of both primary and secondary extinc-
tion are n = 0.20', r = 38um. The Debye-Waller
factors By, = 0.30, B, =0.34 A” are identical with
Lawrence’s (1973a) ﬁt for his small MgO spherical-
crystal case. The results for the extinction factor and
some related parameters for both the Laue case and the
Bragg case are listed in Tables 2 and 3, respectively.
Just as in the LiF case, the minimum value of the
R factor and of } |AY|/N’ is obtained by manual
adjustment without the use of a least-squares program.
The final results, R = 0.0533, Y |AY|/N’ = 0.0376,
show a noticeable improvement compared to results for
secondary-extinction correction alone.

Note that several columns of the parameters after
Y, in Table 2 and Table 3 where primary extinction is
involved are obtained by putting Y 2y instead of X, in
the numerator. Also, Y, (corrected only for secondary
extinction) for d1fferent b are listed separately, while for
b and 1/b there is only one value presented since the Y,
are the same. Y is the mean value of Y, for different b.
Values of Y, Y are extinction factors with both primary
and secondary extlncuon considered.

The value Y = Y Y, has been used occasionally when
both primary and secondary extinction exists. However,
such an approximation agrees with our result only for
Y > 0.8 (see Tables 2, 3). For Y < 0.8, our treatment
gives a Y. value larger than YpYs and the deviation
increases further for small Y . This is why we use
Werner’s treatment instead of using the value Y, Y. The
value r = 38 um may be slightly too large in comparlson
with the result of L(1973b) for MgO but our purpose here
is not to determine the value of r but to explain why a
small primary-extinction factor at low-angle reflection is
required for a good fit. The ultimate test of the validity
of this method will require experiment with different
values of A.

The values of Y, for the MgO 200 refiection evaluated
with the same RH, Ak() and 7 value listed in Tables 2 and

501
3 for the Laue and Bragg cases are 0.0042 and 0.0019,

respectively. The values of Y, for the 933 reflection
are 0.034 and 0.22 for the Laue and Bragg cases,
respectively. One can see that in an absorbing crystal the
values of Y, for Bragg geometry remain small even for a
very large reflection angle such as sinf,/\ = 1.18 A~

This means that the scaling factor would be maccurate
if ¥, were used for data reduction in such a case.

There are several factors that make the R value for
MgO larger than for LiF. The first is the very strong
extinction in MgQO, in which most of the observed
extinction factors for the Bragg case are larger than
for the corresponding Laue case. Thus, L(1973b) listed
them separately but in LiF the listed values are the
mean for the two cases, which is easier to fit than if
they are treated separately. L(1973b) remarked in his
MgO work: ‘The observed structure factors for a set of
symmetry-equivalent reflections whose planes diffracted
with Laue-type geometry were the same, as were those
with Bragg type’. However, from Tables 2 and 3, one
can see that for a set of symmetry-equivalent reflections
the calculated structure factor usually will be different
for different b. The difference in some cases may be as
large as 20%. The co-existence of primary and secondary
extinction in MgO also makes the fit more difficult.

From the above analysis, one can see that it is
necessary, for an accurate determination of the structure
factor from a single-crystal sample, to ensure that:

(a) The sample is of good quality with homogeneous
mosaic spread throughout and free from any deforma-
tion. Its surface should be properly treated by mild
etching and the size of the plane crystal should be large
enough to cover all the reflected beam with the reception
width of the detector sufficiently wide. It is also desirable
to make a preliminary test run to estimate the mosaic
spread of the sample to see if the thickness of the sample
is reasonable.

(b) When a set of symmetry-equivalent reflections for
a plane crystal is measured, it is desirable to treat the
Bragg and Laue cases for different b values separately.
For an absorbing plane crystal, it is better to analyze the
same set of data with both Y, and Y, considering that
Y, decreases with increasing &, and Y, increases with
increasing &, (see Figs. 1 and 2). The agreement between
the values of F_ obtained from the two Y, ’s can be used
as a criterion for the correctness of the chosen scaling
factor, 7, and the Debye—Waller factors.

4. Conclusions and discussion

The re-analysis of the experiments LiF and MgO yield
very good fits, showing that simple, exact and uni-
versal expressions for the secondary extinction for a
crystal plate can be obtained and can be extended to
the spherical crystal with satisfactory results. Hereafter,
all seriously extinguished reflections in single-crystal
diffractometry may be accessible for data analysis in
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Table 2. The observed and calculated structure factors and the observed and calculated extinction factor for each
Laue reflection of MgO

The values of Q (rad cm™!) and RY arc multiplicd by 10°.
s Fo Fe Q b Ac Yo Yy P\‘r y/} &o Aw R’Z[ Y yr

0 971 840 5252 3995 1.00 0032 0.026 0.030 003 0071 0522 299 02555 0.020 0.020
0 1380 845 41.17 1665 0.61 0.028 0.042 0.048 0.056 0.097 0918 324 0.1494 0.032 0.036
1.00  0.032 0.064 1.73  0.2114 0.040

~

h k
20
22

222 1699 844 3393 8862 064 0032 0062 0092 0092 0.126 1331 18% 0.1615 0.057 0.057

400 1972 842 2889 5346 1.00 0.031 0.085 0.164 0.164 0.158 1.762 093 0.1519 0.091 0.091

420 2216 848 2517 3495 0.66 0034 0.114 0209 0.196 0.192 2213 106 0.1361 0.115 0.110
0.10 0.014 0.151 9.06 0.0464 0.094
1.00  0.031 0.228 0.75 0.1310 0.121

4 22 2441 832 2232 2420 066 0.034 0.139 0277 0252 0229 2682 0.87 0.1218 0.149 0.139
022 0.021 0.226 3.05 0.0659 0.129

4 4 0 2850 836 1824 1311 030 0027 0210 0369 0404 0307 3.691 147 0.0730 0.204 0215
1.00 0.030 0.439 0.47 0.0883 0.226

6 00 3040 781 1673 10.11 1.00 0.029 0218 0504 0504 0347 4235 042 00783 0.264 0.264
4 42 3040 817 1673 1011 031 0029 0239 0437 0437 0347 4235 1.19 0.0704 0243 0.25]

0.66 0.033 0.486 0.56 0.0872 0.259

620 3224 773 1546 8.00 0.65 0033 0250 0545 0554 0387 4808 051 0.0782 0.297 0.299
1.00 0.029 0.562 0.38 0.0697 0.301

6 22 3402 751 1438 648 065 0.033 0.273 0597 0597 0425 5408 046 0.0703 0334 0334

4 44 3576 7.66 1345 535 033 0030 0324 0605 0605 0461 6032 079 0.0570 0357 0.357

6 40 3746 747 1264 451 032 0.030 0.349 0646 0.668 0495 6674 0.71 0.0524 0391 0.399
1.00  0.027 0.690 0.29  0.0501 0.407

642 3914 7.0 1194 386 032 0029 0354 0681 0694 0526 7326 0.66 0.0482 0424 0429
0.63 0.03] 0.708 0.36 0.0519 0.434

8 00 4244 651 1075 298 1.00 0.025 0367 0761 0.761 0580 8609 0.24 00372 0492 0492
2 0 4407 643 1025 268 061 0029 0394 0.768 0.772 0.602 9.213 032 0.0395 0511 0.513
1.00  0.025 0.776 0.23  0.0340 0515

6 4 4 4407 642 1025 268 030 0.028 0393 0751 0751 0602 9213 057 00375 0503 0.503

6 6 0 4570 661 9.79 245 1.00 0.024 0455 0.787 0.787 0.622 9.774 0.23 0.0311 0.534 0.534

8 22 4570 671 979 245 0.60 0.028 0469 0.780 0.780 0622 9774 031 00363 0.531 0531

6 6 2 4733 639 938 226 059 0.027 0465 0.789 0789 0.640 10.27 031 0.0335 0.548 0.548

840 4897 623 899 212 027 0.025 0480 0.786 0.794 0.655 10.71 0.58 0.0297 0.557 0.561
1.00  0.023 0.801 0.22 0.0264 0.564

8 42 5063 624 864 202 026 0.024 0522 0793 0.796 0668 11.05 0.60 00275 0.569 0.571
0.57 0.025 0.799 0.31 0.0288 0.573

6 6 4 5230 606 832 194 024 0023 0531 079 0796 0.679 1131 0.63 0.0256 0.579 0.579

8 44 5573 6.10 1773 1.85 021 0.020 0.624 0.798 0.798 0.697 1152 0.76 0.0222 0.593 0.593

100 0 5751 573 746 1.84 1.00 0016 059 0791 0791 0.703 1147 025 00175 0594 0.594

8 6 0 5751 595 746 1.84 1.00 0016 0.636 0791 0.791 0703 1147 025 0.0175 0594 0.5%

10 2 0 5934 575 720 1.85 050 0018 0.636 0780 0780 0.709 11.31 041 00193 0.592 0.592
1.00 0014 0.781 027 0.0159 0.593

8 6 2 5934 583 720 1.85 050 0018 0.654 0.780 0.780 0.709 11.31 041 00193 0592 0.592

10 2 2 6123 571 696 1.89 047 0016 0.671 0768 0.768 0.714 11.04 046 00174 0.589 0.589

10 4 0 6529 534 652 203 007 0013 0671 0.763 0743 0722 10.15 299 00151 059 0.579
1.00  0.010 0.724 0.36  0.0105 0.568

10 4 2 6751 508 631 216 0.03 0011 0.647 0745 0727 0.725 9516 8.66 0.0137 0582 0.571
0.38 0.010 0.709 0.78 0.0112 0.560

331 2157 603 973 540 045 0.030 0384 0604 0641 0513 5361 0.68 00618 0387 0.401
0.83 0.033 0.677 035 0.0745 0415

S 11 2599 543 7.28 237 083 0.033 0556 0829 0829 0.663 9475 020 0.0452 0584 0.584

531 2993 474 551 1.12 049 0033 0739 089 0.893 0784 1693 0.18 00265 0.719 0.717
0.82  0.032 0910 0.12 0.0260 0.728
005 0018 0.871 2,19 00142 0.703

533 3358 385 426 058 049 0.033 0817 0944 0938 0866 2978 0.11 0.0155 0824 0819
0.12 0.022 0.933 044 0.0106 0.815

711 37.04 317 337 032 081 0030 088 0971 0971 0916 5022 0.04 0.008 0891 0.891
551 37.04 319 337 032 015 0.024 0898 0962 0966 0916 50.22 0.21 0.0070 0.884 0.887

0.81 0.030 0.971 0.04 00086 0.891
731 4038 261 273 0.20 047 0031 0910 0979 0980 0945 7965 004 0.0056 0926 0.927
0.80 0.029 0.981 0.03 0.0053 0928
553 4038 260 273 020 0.16 0.025 0903 0977 0978 0945 79.65 0.12 0.0045 0924 0.925
047 0.031 0.979 0.04 0.0056 0.926

733 4366 219 227 0.13 045 0.029 0933 0985 0985 0962 1174 0:03 0.0037 0949 0.949
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Table 2 (cont.)
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hk1l 6g F. F. 0 b Ac Y, Y

751 4692 186 193 010 0.14 0024 0926 0988

0.78 0.026 0.990

91 1 5021 1.68 1.68 008 077 0.024 0994 0991

75 3 5021 1.72 168 0.08 0.12 0022 1.043 0991

041 0.025 0.991

9 3 1 5357 146 150 0.06 038 0023 0957 0.992

075 0.021 0.992

771 57.06 131 0.06 073 0018 0932 0992

933 5706 135 006 034 0020 0990 0992
Table 3. The

Yee Y, & Axo RY, Y. Y.

0.989 0972 1599 007 0.0022 0961 0.962
0.02 00024 0962

0.991 0978 2009 001 00017 0970 0.970

0991 0978 2009 0.07 00016 0969 0.969
002 0.0019 0.969

0992 0982 2332 002 00014 0974 0974
001 0.0013 0974

0.992 0984 2509 001 00010 0976 0.976

0992 0984 2509 0.02 00012 0976 0.976

observed and calculated structure factors and the observed and calculated extinction factors for

each Bragg reflection of MgO

The values of Q (rad cm™!) and R(,’, are multiplied by 10%.

h k1 6, F, F, @ b A, Y,
200 971 1224 5252 3995 —1.00 0049 0054
400 1972 1119 2889 5346 —1.00 0049 0.150
600 3040 973 1673 1011 —1.00 0049 0338
620 3224 941 1546 800 —324 0023 0371
622 3402 931 1438 648 —563 0015 0419
640 3746 859 12 451 —1439 0006 0.462
642 3914 839 1194 38 —2279 0004 0494
800 4244 758 1075 298 —100 0049 0498
8§20 4407 751 1025 268 —170 0036 0538
660 4570 747 979 245 —81.78 0001 0583
822 4570 721 979 245 —205 0032 0542
844 5573 647 773 185 —286 0025 0702
1000 5751 624 746 184 —100 0048 0701
1020 5934 608 720 185 —127 0042 0712
862 5934 612 720 185 —276 002 0722
—9.81  0.009
1022 6123 594 696 189 —137 0040 0727
1040 6529 560 652 203 —145 0039 0.736
1042 6751 534 631 216 —145 0039 0716
511 2599 606 728 237 —376 0021 0.692
711 3704 325 337 032 —173 0036 0932
731 4038 269 273 020 —327 0023 0967
733 4366 224 227 013 —448 0018 0976
931 5357 149 150 006 —170 0036 0997
771 5706 134 136 006 —479 0017 0976
933 5706 135 136 006 —188 0034 0990
755 5706 132 136 006 —479 0017 0946
951 6075 126 126 006 —193 0033 1007
773 6075 123 126 006 —4.12 0019 0959
953 6476 116 1.18 006 —18 0034 0.966
—17.97 0005
11 6930 109 112 008 —110 0045 0940
775 6930 108 112 008 —273 0026 0923
—-6.94 0012

ysc Y s¢ Yp EO AkO Rfl Y c Yt‘

0.101 0.101 0.071 0522 1750 0.6910 0.035 0.035
0.367 0.367 0.158 1.762 259 0.3058 0.117 0.117
0.708 0.708 0.347 4.235 0.72 0.1487 0.301 0.301
0.744 0.744 0.387 4.808 041 0.0627 0339 0.339
0.777 0.777 0425 5.408 0.33 0.0361 0377 0377
0.829 0829 0495 6.674 024 0.0129 0448 0.448
0.849 0.849 0.526 7.326 0.22 0.0076 0480 0.480
0.886 0.886 0.580 8.609 027 0.0779 0.539 0.539
0.895 0895 0.602 9.213 0.20 0.0543 0.562 0.562
0.898 0.898 0.622 9.774 0.16 0.0017 0.581 0.581
0902 0902 0.622 9774 0.17 0.0455 0.582 0.582
0922 0922 0.697 11.52 0.13  0.0309 0.658 0.658
0.928 0928 0.703 1147 0.16 0.0587 0.667 0.667
0928 0928 0.709 11.31 0.14 0.0525 0.672 0.672
0922 0921 0.709 11.31 0.14 0.0322 0.669 0.668
0.921 0.15 0.0112 0.668

0926 0926 0.714 11.04 0.14 0.0515 0.675 0.675
0921 0921 0.722 10.15 0.15 0.0539 0.679 0.679
0917 0917 0725 9.516 0.16 0.0572 0.680 0.680
0902 0902 0.663 9475 024 0.0301 0.618 0618
0.985 0985 0916 50.22 0.04 0.0104 0903 0.903
0991 0991 0945 79.65 0.02 0.0043 0937 0.937
0994 0994 0962 1174 0.01 0.0023 0956 0.956
0.997 0997 0982 2332 0.01 0.0023 0979 0979
0.997 0997 0984 2509 0.01 0.0010 0981 0.981
0997 0997 0984 2509 0.01 0.0020 0981 0.981
0.997 0997 0984 2509 0.01 0.0010 0981 0981
0997 0997 0985 2509 0.01 0.0020 0982 0.982
0997 0997 0985 2509 0.01 0.0011 0982 0982
0997 0997 0985 2329 0.01 0.0021 0982 0982
0.997 0.01 0.0003 0.982

0997 0997 0985 198.1 0.01 0.0034 0.982 0982
0.996 0996 0985 198.1 0.01 0.0020 0982 0982
0.996 0.01 0.0009 0.982

It is impossible to have 440, 531 and 551 reflections for the Bragg case for a plane MgO crystal cut along [100], [010] and [001] with Cu K
incidence, but the corresponding ‘intensity” appears in Lawrence’s (1973b) table, while in the same table the allowed Bragg-case reflections

for 644, 662, 840, 842, 664, 860, 751. 911 and 753 are missing.

traditional crystallography, in particular for the case of
long-wavelength X-ray diffraction and also for the case
where absorption has to be considered and the low-angle
information is important, as in neutron diffractrometry
for a magnetic structure study of rare-earth compounds.
The present method also offers other possibilities, such
as the evaluation of the mosaic spread of a crystal

by measuring the IRPR rather than relying on angular
measurement and the direct evaluation of the value of
u for neutron diffraction when the inelastic scattering
effect is included.

The applicability of this theory, obviously, is for
crystals with small mosaic blocks and large mosaic
spread. For the other extreme case, i.e. a perfect plate
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crystal where coherent diffraction dominates, one can
gave an adequate treatment of its primary extinction.
The problem, however, is how far this theory can be
extended. The two conceptual difficulties involved in
crystals with relatively large mosaic blocks and small
mosaic spread have been pointed out by Werner (1974).
Kato (1976, 1980) and Kawamura & Kato (1983) sug-
gested that the H-D equations hold as far as 7, <
A, where A is the extinction distance and 7, is the
correlation length of the phase factor; his criterion, in
fact, is a minimum allowable 7 when the wavelength
and reflection plane are defined. Becker (1977) suggested
that the H-D equations with XY instead of X' should
be valid as far as [ < A, where T1s the mean size of the
mosaic blocks. Keeping this criterion in mind, one can
see from analysis of the MgO experiment that the fitting
parameter of block radlus r = 38 um already exceeds
the A value of 7.3 x 10™® m for the 200 reflection, i.e.,
by Becker’s criterion, the primary extinction is too large
for the 2 Y treatment. However, the other parameter
n=0.2/, correspondmg to a 7,/ A value of 0.1, is within
the range of applicability for the H-D equations set by
Kato; the mosaic spread 28.3", evaluated from the fitting
value 7, is much larger than 3.85”, the value of the
Darwin width of the 200 reflection. The relatively good
agreement with experimental values of extinction factors
for MgO suggests that the criterion set by Becker may be
too strict. All these, however, are tentative and a final
judgement may require further verification and should
include comparison with carefully prepared experiments
carried out using several different wavelengths.

Through refinement of the data for LiF, we believe
that secondary extinction may still dominate for a par-
ticular reflection at very low Bragg angle provided that
(i) the size of the mosaic blocks is much less than A for
that angle, and (ii) 7, < A.

This method is adequate for a plane crystal in the
asymmetric case. However, for an extremely asymmetric
Bragg case when the angle of grazing emergence is of
the order of a few minutes, i.e. b < —150, the non-
applicability of the H-D equations (Sears, 1996) should
be considered.

Anisotropic extinction resulting from anisotropy in
a mosaic structure can also be included in the formal
theory by allowing 1 and / in XY to depend on the
Miller indices of the reflection (1T r, 1995).
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